Topological vertex/anti-vertex and supergroup gauge theory

被引:10
|
作者
Kimura, Taro [1 ]
Sugimoto, Yuji [2 ,3 ]
机构
[1] Univ Bourgogne Franche Comte, UMR 5584, CNRS, Inst Math Bourgogne, F-21078 Dijon, France
[2] Univ Sci & Technol China, NSFC SFTP Peng Huanwu Ctr Fundamental Theory, Hefei 230026, Anhui, Peoples R China
[3] Univ Sci & Technol China, Interdisciplinary Ctr Theoret Study, Hefei 230026, Anhui, Peoples R China
关键词
D-branes; String Duality; Supersymmetric Gauge Theory; Topological Strings; QUIVER VARIETIES;
D O I
10.1007/JHEP04(2020)081
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We propose a new vertex formalism, called anti-refined topological vertex (anti-vertex for short), to compute the generalized topological string amplitude, which gives rise to the supergroup gauge theory partition function. We show the one-to-many correspondence between the gauge theory and the Calabi-Yau geometry, which is peculiar to the supergroup theory, and the relation between the ordinary vertex formalism and the vertex/anti-vertex formalism through the analytic continuation.
引用
收藏
页数:26
相关论文
共 50 条
  • [21] The real topological vertex at work
    Krefl, Daniel
    Pasquetti, Sara
    Walcher, Johannes
    NUCLEAR PHYSICS B, 2010, 833 (03) : 153 - 198
  • [22] O-vertex, O7+-plane, and topological vertex
    Sung-Soo Kim
    Xiaobin Li
    Futoshi Yagi
    Rui-Dong Zhu
    Journal of High Energy Physics, 2025 (4)
  • [23] Gauge-covariant vertex operators
    Feng, HD
    Siegel, W
    NUCLEAR PHYSICS B, 2004, 683 (1-2) : 168 - 176
  • [24] Refined topological vertex, cylindric partitions and U(1) adjoint theory
    Iqbal, Amer
    Kozcaz, Can
    Shabbir, Khurram
    NUCLEAR PHYSICS B, 2010, 838 (03) : 422 - 457
  • [25] Aspects of supergroup gauge theory
    Kimura, Taro
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2023,
  • [26] Fermionic gluing principle of the topological vertex
    Deng, Fusheng
    Zhou, Jian
    JOURNAL OF HIGH ENERGY PHYSICS, 2012, (06):
  • [27] Refined topological vertex and instanton counting
    Taki, Masato
    JOURNAL OF HIGH ENERGY PHYSICS, 2008, (03):
  • [28] Link Homologies and the Refined Topological Vertex
    Sergei Gukov
    Amer Iqbal
    Can Kozçaz
    Cumrun Vafa
    Communications in Mathematical Physics, 2010, 298 : 757 - 785
  • [29] Nontorus link from topological vertex
    Awata, Hidetoshi
    Kanno, Hiroaki
    Mironov, Andrei
    Morozov, Alexei
    Morozov, Andrey
    PHYSICAL REVIEW D, 2018, 98 (04)
  • [30] The topological dimension of limits of vertex replacements
    Previte, Michelle
    Yang, Shun-Hsiang
    TOPOLOGY AND ITS APPLICATIONS, 2006, 153 (12) : 2013 - 2025