Nontorus link from topological vertex

被引:13
|
作者
Awata, Hidetoshi [1 ]
Kanno, Hiroaki [1 ,2 ]
Mironov, Andrei [3 ,4 ,5 ]
Morozov, Alexei [4 ,5 ]
Morozov, Andrey [4 ,5 ,6 ]
机构
[1] Nagoya Univ, Grad Sch Math, Nagoya, Aichi 4648602, Japan
[2] Nagoya Univ, KMI, Nagoya, Aichi 4648602, Japan
[3] Lebedev Phys Inst, Moscow 119991, Russia
[4] ITEP, Moscow 117218, Russia
[5] Inst Informat Transmiss Problems, Moscow 127994, Russia
[6] MIPT, Dolgoprudnyi 141701, Russia
关键词
KNOT POLYNOMIALS; HECKE ALGEBRAS; TORUS KNOTS; INVARIANTS; REPRESENTATIONS; MODELS;
D O I
10.1103/PhysRevD.98.046018
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The recently suggested tangle calculus for knot polynomials is intimately related to topological string considerations and can help to build the HOMFLY-PT invariants from the topological vertices. We discuss this interplay in the simplest example of the Hopf link and link L-8n8. It turns out that the resolved conifold with four different representations on the four external legs, on the topological string side, is described by a special projection of the four-component link L-8n8, which reduces to the Hopf link colored with two composite representations. Thus, this provides the first explicit example of non-torus link description through topological vertex. It is not a real breakthrough, because L-8n8 is just a cable of the Hopf link, still it can help to intensify the development of the formalism towards more interesting examples.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Link Homologies and the Refined Topological Vertex
    Sergei Gukov
    Amer Iqbal
    Can Kozçaz
    Cumrun Vafa
    Communications in Mathematical Physics, 2010, 298 : 757 - 785
  • [2] Link Homologies and the Refined Topological Vertex
    Gukov, Sergei
    Iqbal, Amer
    Kozcaz, Can
    Vafa, Cumrun
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2010, 298 (03) : 757 - 785
  • [3] The topological vertex
    Aganagic, M
    Klemm, A
    Mariño, M
    Vafa, C
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2005, 254 (02) : 425 - 478
  • [4] The Topological Vertex
    Mina Aganagic
    Albrecht Klemm
    Marcos Mariño
    Cumrun Vafa
    Communications in Mathematical Physics, 2005, 254 : 425 - 478
  • [5] The refined topological vertex
    Iqbal, Amer
    Kozcaz, Can
    Vafa, Cumrun
    JOURNAL OF HIGH ENERGY PHYSICS, 2009, (10):
  • [6] The orbifold topological vertex
    Bryan, Jim
    Cadman, Charles
    Young, Ben
    ADVANCES IN MATHEMATICS, 2012, 229 (01) : 531 - 595
  • [7] An elliptic topological vertex
    Foda, Omar
    Zhu, Rui-Dong
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2018, 51 (46)
  • [8] Lectures on the topological vertex
    Marino, M.
    ENUMERATIVE INVARIANTS IN ALGEBRAIC GEOMETRY AND STRING THEORY, 2008, 1947 : 49 - 104
  • [9] A Macdonald refined topological vertex
    Foda, Omar
    Wu, Jian-Feng
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (29)
  • [10] Torus Knots and the Topological Vertex
    Hans Jockers
    Albrecht Klemm
    Masoud Soroush
    Letters in Mathematical Physics, 2014, 104 : 953 - 989