The topological vertex

被引:468
|
作者
Aganagic, M [1 ]
Klemm, A
Mariño, M
Vafa, C
机构
[1] Harvard Univ, Jefferson Phys Lab, Cambridge, MA 02138 USA
[2] Humboldt Univ, Inst Phys, D-10115 Berlin, Germany
[3] CERN, Div Theory, CH-1211 Geneva 23, Switzerland
[4] CALTECH, Pasadena, CA 91125 USA
基金
美国国家科学基金会;
关键词
D O I
10.1007/s00220-004-1162-z
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We construct a cubic field theory which provides all genus amplitudes of the topological A-model for all non-compact toric Calabi-Yau threefolds. The topology of a given Feynman diagram encodes the topology of a fixed Calabi-Yau, with Schwinger parameters playing the role of Kahler classes of the threefold. We interpret this result as an operatorial computation of the amplitudes in the B-model mirror which is the quantum Kodaira-Spencer theory. The only degree of freedom of this theory is an unconventional chiral scalar on a Riemann surface. In this setup we identify the B-branes on the mirror Riemann surface as fermions related to the chiral boson by bosonization.
引用
收藏
页码:425 / 478
页数:54
相关论文
共 50 条
  • [1] The Topological Vertex
    Mina Aganagic
    Albrecht Klemm
    Marcos Mariño
    Cumrun Vafa
    Communications in Mathematical Physics, 2005, 254 : 425 - 478
  • [2] The refined topological vertex
    Iqbal, Amer
    Kozcaz, Can
    Vafa, Cumrun
    JOURNAL OF HIGH ENERGY PHYSICS, 2009, (10):
  • [3] The orbifold topological vertex
    Bryan, Jim
    Cadman, Charles
    Young, Ben
    ADVANCES IN MATHEMATICS, 2012, 229 (01) : 531 - 595
  • [4] An elliptic topological vertex
    Foda, Omar
    Zhu, Rui-Dong
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2018, 51 (46)
  • [5] Lectures on the topological vertex
    Marino, M.
    ENUMERATIVE INVARIANTS IN ALGEBRAIC GEOMETRY AND STRING THEORY, 2008, 1947 : 49 - 104
  • [6] A Macdonald refined topological vertex
    Foda, Omar
    Wu, Jian-Feng
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (29)
  • [7] Torus Knots and the Topological Vertex
    Hans Jockers
    Albrecht Klemm
    Masoud Soroush
    Letters in Mathematical Physics, 2014, 104 : 953 - 989
  • [8] Trace identities for the topological vertex
    Jim Bryan
    Martijn Kool
    Benjamin Young
    Selecta Mathematica, 2018, 24 : 1527 - 1548
  • [9] Refining the shifted topological vertex
    Drissi, L. B.
    Jehjouh, H.
    Saidi, E. H.
    JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (01)
  • [10] Flop invariance of the topological vertex
    Minabe, Satoshi
    NONCOMMUTATIVITY AND SINGULARITIES: PROCEEDINGS OF FRENCH-JAPANESE SYMPOSIA HELD AT IHES IN 2006, 2009, 55 : 269 - 279