Topological vertex/anti-vertex and supergroup gauge theory

被引:10
|
作者
Kimura, Taro [1 ]
Sugimoto, Yuji [2 ,3 ]
机构
[1] Univ Bourgogne Franche Comte, UMR 5584, CNRS, Inst Math Bourgogne, F-21078 Dijon, France
[2] Univ Sci & Technol China, NSFC SFTP Peng Huanwu Ctr Fundamental Theory, Hefei 230026, Anhui, Peoples R China
[3] Univ Sci & Technol China, Interdisciplinary Ctr Theoret Study, Hefei 230026, Anhui, Peoples R China
关键词
D-branes; String Duality; Supersymmetric Gauge Theory; Topological Strings; QUIVER VARIETIES;
D O I
10.1007/JHEP04(2020)081
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We propose a new vertex formalism, called anti-refined topological vertex (anti-vertex for short), to compute the generalized topological string amplitude, which gives rise to the supergroup gauge theory partition function. We show the one-to-many correspondence between the gauge theory and the Calabi-Yau geometry, which is peculiar to the supergroup theory, and the relation between the ordinary vertex formalism and the vertex/anti-vertex formalism through the analytic continuation.
引用
收藏
页数:26
相关论文
共 50 条
  • [41] TRANSVERSE VERTEX AND GAUGE TECHNIQUE IN QUANTUM ELECTRODYNAMICS
    KING, JE
    PHYSICAL REVIEW D, 1983, 27 (08): : 1821 - 1829
  • [42] Three-gluon vertex in Landau gauge
    Eichmann, Gernot
    Williams, Richard
    Alkofer, Reinhard
    Vujinovic, Milan
    PHYSICAL REVIEW D, 2014, 89 (10):
  • [43] GAUGE TRANSFORMATION AND VERTEX MODELS - A POLYNOMIAL FORMULATION
    ROLLET, G
    WU, FY
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1995, 9 (24): : 3209 - 3217
  • [44] FIVE DIMENSIONAL GAUGE THEORIES AND VERTEX OPERATORS
    Carlsson, Erik
    Nekrasov, Nikita
    Okounkov, Andrei
    MOSCOW MATHEMATICAL JOURNAL, 2014, 14 (01) : 39 - 61
  • [45] GAUGE INVARIANCE AND SCALING IN RESONANCE MODELS OF VERTEX
    LEUTWYLER, H
    HELVETICA PHYSICA ACTA, 1972, 45 (02): : 182 - +
  • [46] VERTEX CORRECTIONS TO THE THEORY OF SUPERCONDUCTIVITY
    NICOL, EJ
    FREERICKS, JK
    PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 1994, 235 : 2379 - 2380
  • [47] VERTEX RENORMALIZATION IN POTENTIAL THEORY
    BERTOCCHI, L
    MCMILLAN, M
    TONIN, M
    PREDAZZI, E
    NUOVO CIMENTO, 1964, 31 (06): : 1352 - +
  • [48] Topological finiteness for edge-vertex enumeration
    Swartz, Ed
    ADVANCES IN MATHEMATICS, 2008, 219 (05) : 1722 - 1728
  • [49] Crystal model for the closed topological vertex geometry
    Sulkowski, Piotr
    JOURNAL OF HIGH ENERGY PHYSICS, 2006, (12):
  • [50] Codes, vertex operators and topological modular forms
    Ganter, Nora
    Laures, Gerd
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2022, 54 (04) : 1167 - 1196