Analytical description of critical dynamics for two-dimensional dissipative nonlinear maps

被引:5
|
作者
Mendez-Bermudez, J. A. [1 ]
de Oliveira, Juliano A. [2 ]
Leonel, Edson D. [3 ,4 ]
机构
[1] Benemerita Univ Autonoma Puebla, Inst Fis, Apartado Postal J-48, Puebla 72570, Mexico
[2] UNESP Univ Estadual Paulista, Campus Sao Joao da Boa Vista, BR-13876750 Sao Joao Da Boa Vista, SP, Brazil
[3] UNESP Univ Estadual Paulista, Dept Fis, BR-13506900 Rio Claro, SP, Brazil
[4] Abdus Salam Int Ctr Theoret Phys, Str Costiera 11, I-34151 Trieste, Italy
基金
巴西圣保罗研究基金会;
关键词
Dissipative dynamics; Nonlinear map; Scaling; STRANGE ATTRACTORS; SCALING PROPERTIES; STATISTICAL PROPERTIES; ACCELERATOR MODEL; BOUNCER MODEL; STANDARD MAP; SYSTEMS; LOCALIZATION; DISTRIBUTIONS; TRANSIENT;
D O I
10.1016/j.physleta.2016.04.005
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The critical dynamics near the transition from unlimited to limited action diffusion for two families of well known dissipative nonlinear maps, namely the dissipative standard and dissipative discontinuous maps, is characterized by the use of an analytical approach. The approach is applied to explicitly obtain the average squared action as a function of the (discrete) time and the parameters controlling nonlinearity and dissipation. This allows to obtain a set of critical exponents so far obtained numerically in the literature. The theoretical predictions are verified by extensive numerical simulations. We conclude that all possible dynamical cases, independently on the map parameter values and initial conditions, collapse into the universal exponential decay of the properly normalized average squared action as a function of a normalized time. The formalism developed here can be extended to many other different types of mappings therefore making the methodology generic and robust. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:1959 / 1963
页数:5
相关论文
共 50 条
  • [41] Two-dimensional beams of dissipative antisolitons
    Ankiewicz, A.
    Soto-Crespo, J. M.
    Devine, N.
    Akhmediev, N.
    COMPLEX SYSTEMS II, 2008, 6802
  • [42] Two-dimensional dissipative gap solitons
    Sakaguchi, Hidetsugu
    Malomed, Boris A.
    PHYSICAL REVIEW E, 2009, 80 (02):
  • [43] Finding critical exponents and parameter space for a family of dissipative two-dimensional mappings
    da Costa, Fabio H.
    de Almeida, Mayla A. M.
    Medrano-T, Rene O.
    Leonel, Edson D.
    de Oliveira, Juliano A.
    CHAOS, 2024, 34 (12)
  • [44] On maps of the two-dimensional sphere
    Shchepin, EV
    RUSSIAN MATHEMATICAL SURVEYS, 2003, 58 (06) : 1218 - 1219
  • [45] Measuring transient chaos in nonlinear one- and two-dimensional maps
    Buszko, K
    Stefánski, K
    CHAOS SOLITONS & FRACTALS, 2006, 27 (03) : 630 - 646
  • [46] Thermofield Dynamics for Two-Dimensional Dissipative Mesoscopic Circuit Coupled to a Power Source
    Choi, Jeong Ryeol
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2010, 79 (04)
  • [47] COMPUTATION OF SYMBOLIC DYNAMICS FOR TWO-DIMENSIONAL PIECEWISE-AFFINE MAPS
    Sella, Lorenzo
    Collins, Pieter
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2011, 15 (03): : 739 - 767
  • [48] Two-Dimensional Discrete Memristive Oscillatory Hyperchaotic Maps With Diverse Dynamics
    Lai, Qiang
    Yang, Liang
    Chen, Guanrong
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2025, 72 (01) : 969 - 979
  • [49] Quantum fluctuations of one- and two-dimensional spatial dissipative solitons in a nonlinear interferometer: II. Two-dimensional light solitons
    Nesterov, L. A.
    Veretenov, N. A.
    Rosanov, N. N.
    OPTICS AND SPECTROSCOPY, 2015, 118 (05) : 794 - 802
  • [50] Quantum fluctuations of one- and two-dimensional spatial dissipative solitons in a nonlinear interferometer: II. Two-dimensional light solitons
    L. A. Nesterov
    N. A. Veretenov
    N. N. Rosanov
    Optics and Spectroscopy, 2015, 118 : 794 - 802