Analytical description of critical dynamics for two-dimensional dissipative nonlinear maps

被引:5
|
作者
Mendez-Bermudez, J. A. [1 ]
de Oliveira, Juliano A. [2 ]
Leonel, Edson D. [3 ,4 ]
机构
[1] Benemerita Univ Autonoma Puebla, Inst Fis, Apartado Postal J-48, Puebla 72570, Mexico
[2] UNESP Univ Estadual Paulista, Campus Sao Joao da Boa Vista, BR-13876750 Sao Joao Da Boa Vista, SP, Brazil
[3] UNESP Univ Estadual Paulista, Dept Fis, BR-13506900 Rio Claro, SP, Brazil
[4] Abdus Salam Int Ctr Theoret Phys, Str Costiera 11, I-34151 Trieste, Italy
基金
巴西圣保罗研究基金会;
关键词
Dissipative dynamics; Nonlinear map; Scaling; STRANGE ATTRACTORS; SCALING PROPERTIES; STATISTICAL PROPERTIES; ACCELERATOR MODEL; BOUNCER MODEL; STANDARD MAP; SYSTEMS; LOCALIZATION; DISTRIBUTIONS; TRANSIENT;
D O I
10.1016/j.physleta.2016.04.005
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The critical dynamics near the transition from unlimited to limited action diffusion for two families of well known dissipative nonlinear maps, namely the dissipative standard and dissipative discontinuous maps, is characterized by the use of an analytical approach. The approach is applied to explicitly obtain the average squared action as a function of the (discrete) time and the parameters controlling nonlinearity and dissipation. This allows to obtain a set of critical exponents so far obtained numerically in the literature. The theoretical predictions are verified by extensive numerical simulations. We conclude that all possible dynamical cases, independently on the map parameter values and initial conditions, collapse into the universal exponential decay of the properly normalized average squared action as a function of a normalized time. The formalism developed here can be extended to many other different types of mappings therefore making the methodology generic and robust. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:1959 / 1963
页数:5
相关论文
共 50 条
  • [21] Two-dimensional analytical description of the plasma potential in a magnetron discharge
    Claudiu Costin
    Tiberiu M. Minea
    Scientific Reports, 13
  • [22] Homoclinic tangencies of arbitrarily high orders in conservative and dissipative two-dimensional maps
    Gonchenko, Sergey
    Turaev, Dmitry
    Shilnikov, Leonid
    NONLINEARITY, 2007, 20 (02) : 241 - 275
  • [23] Perturbing two-dimensional maps having critical homoclinic orbits
    Battelli, F
    Lazzari, C
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1999, 9 (06): : 1189 - 1195
  • [25] Universal dynamics in the expansion of vortex clusters in a dissipative two-dimensional superfluid
    Stockdale, Oliver R.
    Reeves, Matthew T.
    Yu, Xiaoquan
    Gauthier, Guillaume
    Goddard-Lee, Kwan
    Bowen, Warwick P.
    Neely, Tyler W.
    Davis, Matthew J.
    PHYSICAL REVIEW RESEARCH, 2020, 2 (03):
  • [26] Properties of structure and dynamics of a two-dimensional dissipative Yukawa dusty plasma
    Liu Song-Fen
    Huang Gui-Ling
    Xin, Wang
    Liu Yan-Hong
    Hu Bei-Lai
    Long, Wang
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2006, 46 (06) : 1085 - 1090
  • [27] Vortex formation and dynamics in two-dimensional driven-dissipative condensates
    Hebenstreit, F.
    PHYSICAL REVIEW A, 2016, 94 (06)
  • [29] Description of Degenerate Two-Dimensional Singularities with Single Critical Point
    I. M. Nikonov
    Moscow University Mathematics Bulletin, 2019, 74 : 87 - 97
  • [30] Description of Degenerate Two-Dimensional Singularities with Single Critical Point
    Nikonov, I. M.
    MOSCOW UNIVERSITY MATHEMATICS BULLETIN, 2019, 74 (03) : 87 - 97