Analytical description of critical dynamics for two-dimensional dissipative nonlinear maps

被引:5
|
作者
Mendez-Bermudez, J. A. [1 ]
de Oliveira, Juliano A. [2 ]
Leonel, Edson D. [3 ,4 ]
机构
[1] Benemerita Univ Autonoma Puebla, Inst Fis, Apartado Postal J-48, Puebla 72570, Mexico
[2] UNESP Univ Estadual Paulista, Campus Sao Joao da Boa Vista, BR-13876750 Sao Joao Da Boa Vista, SP, Brazil
[3] UNESP Univ Estadual Paulista, Dept Fis, BR-13506900 Rio Claro, SP, Brazil
[4] Abdus Salam Int Ctr Theoret Phys, Str Costiera 11, I-34151 Trieste, Italy
基金
巴西圣保罗研究基金会;
关键词
Dissipative dynamics; Nonlinear map; Scaling; STRANGE ATTRACTORS; SCALING PROPERTIES; STATISTICAL PROPERTIES; ACCELERATOR MODEL; BOUNCER MODEL; STANDARD MAP; SYSTEMS; LOCALIZATION; DISTRIBUTIONS; TRANSIENT;
D O I
10.1016/j.physleta.2016.04.005
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The critical dynamics near the transition from unlimited to limited action diffusion for two families of well known dissipative nonlinear maps, namely the dissipative standard and dissipative discontinuous maps, is characterized by the use of an analytical approach. The approach is applied to explicitly obtain the average squared action as a function of the (discrete) time and the parameters controlling nonlinearity and dissipation. This allows to obtain a set of critical exponents so far obtained numerically in the literature. The theoretical predictions are verified by extensive numerical simulations. We conclude that all possible dynamical cases, independently on the map parameter values and initial conditions, collapse into the universal exponential decay of the properly normalized average squared action as a function of a normalized time. The formalism developed here can be extended to many other different types of mappings therefore making the methodology generic and robust. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:1959 / 1963
页数:5
相关论文
共 50 条
  • [31] Nonequilibrium critical dynamics of the two-dimensional XY model
    Berthier, L
    Holdsworth, PCW
    Sellitto, M
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (09): : 1805 - 1824
  • [32] Quantum critical dynamics of the two-dimensional Bose gas
    Sachdev, S
    Dunkel, ER
    PHYSICAL REVIEW B, 2006, 73 (08)
  • [33] Analytical solution of nonlinear diffusion equation in two-dimensional surface
    Janavicius, AJ
    Turskiene, S
    ACTA PHYSICA POLONICA A, 2005, 108 (06) : 979 - 983
  • [34] Dissipative Homoclinic Loops of Two-Dimensional Maps and Strange Attractors with One Direction of Instability
    Wang, Qiudong
    Ott, William
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2011, 64 (11) : 1439 - 1496
  • [35] Nonlinear dynamics of two-dimensional granular periodic lattices
    Bitar, D.
    Kacem, N.
    Bouhaddi, N.
    PROCEEDINGS OF ISMA2016 INTERNATIONAL CONFERENCE ON NOISE AND VIBRATION ENGINEERING AND USD2016 INTERNATIONAL CONFERENCE ON UNCERTAINTY IN STRUCTURAL DYNAMICS, 2016, : 1983 - 1994
  • [36] Nonlinear dynamics and gust response of a two-dimensional wing
    Zhang, Xiaoyang
    Kheiri, Mojtaba
    Xie, Wen-Fang
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2020, 123
  • [37] Discrete dynamics of two-dimensional nonlinear hybrid automata
    Sella, Lorenzo
    Collins, Pieter
    HYBRID SYSTEMS: COMPUTATION AND CONTROL, 2008, 4981 : 486 - 499
  • [38] Analytical Description of Two-Dimensional Magnetic Arrays Suitable for Biomedical Applications
    Ilic, Andjelija Z.
    Cirkovic, Sasa
    Djordjevic, Drago M.
    De Luka, Silvio R.
    Milovanovich, Ivan D.
    Trbovich, Alexander M.
    Ristic-Djurovic, Jasna L.
    IEEE TRANSACTIONS ON MAGNETICS, 2013, 49 (12) : 5656 - 5663
  • [39] HYBRID STOCHASTIC KINETIC DESCRIPTION OF TWO-DIMENSIONAL TRAFFIC DYNAMICS
    Herty, Michael
    Tosin, Andrea
    Visconti, Giuseppe
    Zanella, Mattia
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2018, 78 (05) : 2737 - 2762
  • [40] Dissipative two-dimensional Raman lattice
    Li, Haowei
    Yi, Wei
    PHYSICAL REVIEW A, 2023, 107 (01)