Analytical solution of nonlinear diffusion equation in two-dimensional surface

被引:4
|
作者
Janavicius, AJ
Turskiene, S
机构
[1] Siauliai Univ, Fac Nat Sci, LT-76351 Shiauliai, Lithuania
[2] Siauliai Univ, Fac Math & Informat, LT-76351 Shiauliai, Lithuania
关键词
D O I
10.12693/APhysPolA.108.979
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We considered practically important case of nonlinear diffusion in the anisotropic plane where diffusion coefficients for diffusion in X and y axis directions can be different. This equation was transformed using similarity variables. The approximate analytical solution of the transformed equation expressed by power-series expansion for two variables about the zero point including only the first terms. The graphic representations show sufficient accuracy of the obtained analytical solution.
引用
收藏
页码:979 / 983
页数:5
相关论文
共 50 条
  • [1] A two-dimensional corner solution for a nonlinear diffusion equation
    Betelú, S
    [J]. APPLIED MATHEMATICS LETTERS, 2000, 13 (03) : 119 - 123
  • [2] A TWO-DIMENSIONAL ANALYTICAL SOLUTION OF THE DIFFUSION EQUATION FOR SILICON-ON-INSULATOR STRUCTURES
    SWEID, I
    GUILLEMOT, N
    KAMARINOS, G
    [J]. JOURNAL OF APPLIED PHYSICS, 1988, 63 (12) : 5633 - 5637
  • [3] Approximate analytical solution of two-dimensional space-time fractional diffusion equation
    Pandey, Prashant
    Kumar, Sachin
    Gomez, Francisco
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (12) : 7194 - 7207
  • [4] Analytical solution of the nonlinear diffusion equation
    Dubey, Ravi Shanker
    Goswami, Pranay
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2018, 133 (05):
  • [5] Analytical solution of the nonlinear diffusion equation
    Ravi Shanker Dubey
    Pranay Goswami
    [J]. The European Physical Journal Plus, 133
  • [6] An analytical solution for two and three dimensional nonlinear Burgers' equation
    Gao, Q.
    Zou, M. Y.
    [J]. APPLIED MATHEMATICAL MODELLING, 2017, 45 : 255 - 270
  • [7] Analytical Solution of Two-Dimensional Sine-Gordon Equation
    Deresse, Alemayehu Tamirie
    Mussa, Yesuf Obsie
    Gizaw, Ademe Kebede
    [J]. ADVANCES IN MATHEMATICAL PHYSICS, 2021, 2021
  • [8] Quasi-analytical solution of two-dimensional Helmholtz equation
    Van Hirtum, A.
    [J]. APPLIED MATHEMATICAL MODELLING, 2017, 47 : 96 - 102
  • [9] Boundary integral solution of the two-dimensional fractional diffusion equation
    Kemppainen, J.
    Ruotsalainen, K.
    [J]. INTEGRAL METHODS IN SCIENCE AND ENGINEERING: TECHNIQUES AND APPLICATIONS, 2008, : 141 - 148
  • [10] A semi-analytical solution method for two-dimensional Helmholtz equation
    Li, Boning
    Cheng, Liang
    Deeks, Andrew J.
    Zhao, Ming
    [J]. APPLIED OCEAN RESEARCH, 2006, 28 (03) : 193 - 207