Analytical solution of nonlinear diffusion equation in two-dimensional surface

被引:4
|
作者
Janavicius, AJ
Turskiene, S
机构
[1] Siauliai Univ, Fac Nat Sci, LT-76351 Shiauliai, Lithuania
[2] Siauliai Univ, Fac Math & Informat, LT-76351 Shiauliai, Lithuania
关键词
D O I
10.12693/APhysPolA.108.979
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We considered practically important case of nonlinear diffusion in the anisotropic plane where diffusion coefficients for diffusion in X and y axis directions can be different. This equation was transformed using similarity variables. The approximate analytical solution of the transformed equation expressed by power-series expansion for two variables about the zero point including only the first terms. The graphic representations show sufficient accuracy of the obtained analytical solution.
引用
下载
收藏
页码:979 / 983
页数:5
相关论文
共 50 条
  • [21] Explicit solutions of a two-dimensional fourth-order nonlinear diffusion equation
    Betelú, SI
    King, JR
    MATHEMATICAL AND COMPUTER MODELLING, 2003, 37 (3-4) : 395 - 403
  • [22] Some characteristics of a plume from a point source based on analytical solution of the two-dimensional advection-diffusion equation
    Tirabassi, Tiziano
    Tiesi, Alessandro
    Buske, Daniela
    Vilhena, Marco T.
    Moreira, Davidson M.
    ATMOSPHERIC ENVIRONMENT, 2009, 43 (13) : 2221 - 2227
  • [23] Modified local singular boundary method for solution of two-dimensional diffusion equation
    Kovarik, Karel
    Muzik, Juraj
    Gago, Filip
    Sitanyiova, Dana
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2022, 143 : 525 - 534
  • [24] A two-dimensional solution of the advection-diffusion equation with dry deposition to the ground
    Tirabassi, Tiziano
    Buske, Daniela
    Moreira, Davidson M.
    Vilhena, Marco T.
    JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY, 2008, 47 (08) : 2096 - 2104
  • [25] Finding the moment functions of a solution of the two-dimensional diffusion equation with random coefficients
    Borovikova, M. M.
    Zadorozhnii, V. G.
    IZVESTIYA MATHEMATICS, 2010, 74 (06) : 1127 - 1154
  • [27] A Numerical Solution to the Two-Dimensional Nonlinear Degenerate Heat Conduction Equation with a Source
    Kazakov, A. L.
    Spevak, L. F.
    Nefedova, O. A.
    MECHANICS, RESOURCE AND DIAGNOSTICS OF MATERIALS AND STRUCTURES (MRDMS-2020): PROCEEDING OF THE 14TH INTERNATIONAL CONFERENCE ON MECHANICS, RESOURCE AND DIAGNOSTICS OF MATERIALS AND STRUCTURES, 2020, 2315
  • [28] Numerical solution of two-dimensional nonlinear differential equation by homotopy perturbation method
    Ghasemi, M.
    Kajani, M. Tavassoli
    Davari, A.
    APPLIED MATHEMATICS AND COMPUTATION, 2007, 189 (01) : 341 - 345
  • [29] Diffusion approximations of the two-dimensional master equation
    Robertson, SH
    Pilling, MJ
    Green, NJB
    MOLECULAR PHYSICS, 1996, 89 (05) : 1531 - 1551
  • [30] Numerical solution of two-dimensional nonlinear fractional order reaction-advection-diffusion equation by using collocation method
    Singh, Manpal
    Das, S.
    Rajeev
    Craciun, E-M
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2021, 29 (02): : 211 - 230