COMPUTATION OF SYMBOLIC DYNAMICS FOR TWO-DIMENSIONAL PIECEWISE-AFFINE MAPS

被引:0
|
作者
Sella, Lorenzo
Collins, Pieter
机构
[1] Niels Bohrweg 1, Leiden
[2] Bouillonstraat
来源
关键词
Two-dimensional piecewise-affine map; Conley index; symbolic dynamics; homoclinic tangles; Lozi map;
D O I
10.3934/dcdsb.2011.15.739
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we design and implement an algorithm for computing symbolic dynamics for two dimensional piecewise-affine maps. The algorithm is based on detection of periodic orbits using the Conley index and Szymczak decomposition of Conley index pair. The algorithm is also extended to deal with discontinuous maps. We compare the algorithm with the algorithm based on tangle of fixed points. We apply the algorithms to compute the symbolic dynamics and entropy bounds for the Lozi map.
引用
收藏
页码:739 / 767
页数:29
相关论文
共 50 条
  • [1] THE TWO-WELL PROBLEM FOR PIECEWISE-AFFINE MAPS
    Dacorogna, Bernard
    Marcellini, Paolo
    Paolini, Emanuele
    [J]. ADVANCES IN DIFFERENTIAL EQUATIONS, 2012, 17 (7-8) : 673 - 696
  • [2] Arithmetic exponents in piecewise-affine planar maps
    Roberts, John A. G.
    Vivaldi, Franco
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2015, 298 : 1 - 12
  • [3] Computation of symbolic dynamics for one-dimensional maps
    Sella, Lorenzo
    Collins, Pieter
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 234 (02) : 418 - 436
  • [4] A CANONICAL REPRESENTATION FOR PIECEWISE-AFFINE MAPS AND ITS APPLICATIONS TO CIRCUIT ANALYSIS
    GUZELIS, C
    GOKNAR, IC
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1991, 38 (11): : 1342 - 1354
  • [5] Topological dynamics of piecewise λ-affine maps
    Nogueira, Arnaldo
    Pires, Benito
    Rosales, Rafael A.
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2018, 38 : 1876 - 1893
  • [6] About Two-Dimensional Piecewise Continuous Noninvertible Maps
    [J]. Int J Bifurcations Chaos Appl Sci Eng, 5 (893):
  • [7] About two-dimensional piecewise continuous noninvertible maps
    Christian, M
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1996, 6 (05): : 893 - 918
  • [8] SYMBOLIC DYNAMICS OF PIECEWISE-LINEAR MAPS
    WU, CW
    CHUA, LO
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-ANALOG AND DIGITAL SIGNAL PROCESSING, 1994, 41 (06): : 420 - 424
  • [9] SYMBOLIC DYNAMICS FOR A KINDS OF PIECEWISE SMOOTH MAPS
    Duan, Jicheng
    Wei, Zhouchao
    Li, Denghui
    Su, Han
    Grebogi, Celso
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2024, 17 (09): : 2778 - 2787
  • [10] Quiet sigma delta quantization, and global convergence for a class of asymmetric piecewise-affine maps
    Ward, Rachel
    [J]. NONLINEARITY, 2010, 23 (09) : 2165 - 2182