A CANONICAL REPRESENTATION FOR PIECEWISE-AFFINE MAPS AND ITS APPLICATIONS TO CIRCUIT ANALYSIS

被引:38
|
作者
GUZELIS, C [1 ]
GOKNAR, IC [1 ]
机构
[1] ISTANBUL TECH UNIV,FAC ELECT ELECTR ENGN,MASLAK 80626,TURKEY
来源
关键词
D O I
10.1109/31.99163
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A new canonical representation for a rather general class of piecewise-affine maps has been developed. The given canonical representation extends the canonical representation proposed by Chua and Kang into PWA partitions, which arise frequently in driving-point, transfer characteristics, and state equations. Thus a universal canonical representation that is capable of characterizing circuit equations, state equations, and driving-point and transfer characteristics of piecewise-affine circuits in a compact global analytic form has been obtained. The canonical forms developed seem to be promising tools for computational purposes as well as for analytical studies of piecewise-affine circuits.
引用
收藏
页码:1342 / 1354
页数:13
相关论文
共 50 条
  • [1] Arithmetic exponents in piecewise-affine planar maps
    Roberts, John A. G.
    Vivaldi, Franco
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2015, 298 : 1 - 12
  • [2] Bifurcation analysis of a circuit-related piecewise-affine map
    [J]. Storace, M. (Marco.Storace@unige.it), Circuits and Systems Society, IEEE CASS; Science Council of Japan; The Inst. of Electronics, Inf. and Communication Engineers, IEICE; The Institute of Electrical and Electronics Engineers, Inc., IEEE (Institute of Electrical and Electronics Engineers Inc.):
  • [3] Bifurcation analysis of a circuit-related piecewise-affine map
    Bizzarri, F
    Carezzano, L
    Storace, M
    Gardini, L
    [J]. 2005 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), VOLS 1-6, CONFERENCE PROCEEDINGS, 2005, : 3403 - 3406
  • [4] A current-mode circuit implementing chaotic continuous piecewise-affine Markov maps
    Rovatti, R
    Manaresi, N
    Setti, G
    Franchi, E
    [J]. PROCEEDINGS OF THE SEVENTH INTERNATIONAL CONFERENCE ON MICROELECTRONICS FOR NEURAL, FUZZY AND BIO-INSPIRED SYSTEMS, MICORNEURO'99, 1999, : 275 - 282
  • [5] THE TWO-WELL PROBLEM FOR PIECEWISE-AFFINE MAPS
    Dacorogna, Bernard
    Marcellini, Paolo
    Paolini, Emanuele
    [J]. ADVANCES IN DIFFERENTIAL EQUATIONS, 2012, 17 (7-8) : 673 - 696
  • [6] COMPUTATION OF SYMBOLIC DYNAMICS FOR TWO-DIMENSIONAL PIECEWISE-AFFINE MAPS
    Sella, Lorenzo
    Collins, Pieter
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2011, 15 (03): : 739 - 767
  • [7] Circuit implementation of piecewise-affine functions based on a binary search tree
    Oliveri, Alberto
    Oliveri, Andrea
    Poggi, Tomaso
    Storace, Marco
    [J]. 2009 EUROPEAN CONFERENCE ON CIRCUIT THEORY AND DESIGN, VOLS 1 AND 2, 2009, : 145 - 148
  • [8] Multidimensional Piecewise-Affine Approximations for Gas Lifting and Pooling Applications
    Misener, Ruth
    Gounaris, Chrysanthos E.
    Floudas, Christodoulos A.
    [J]. DESIGN FOR ENERGY AND THE ENVIRONMENT, 2010, : 887 - 896
  • [9] Controllability analysis of biosystems based on piecewise-affine systems approach
    Azuma, Shun-ichi
    Yanagisawa, Eriko
    Imura, Jun-ichi
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2008, 53 (SPECIAL ISSUE) : 139 - 152
  • [10] Qualitative analysis of nonlinear biochemical networks with piecewise-affine functions
    Musters, M. W. J. M.
    de Jong, H.
    van den Bosch, P. P. J.
    van Riel, N. A. W.
    [J]. HYBRID SYSTEMS: COMPUTATION AND CONTROL, PROCEEDINGS, 2007, 4416 : 727 - +