SYMBOLIC DYNAMICS OF PIECEWISE-LINEAR MAPS

被引:0
|
作者
WU, CW [1 ]
CHUA, LO [1 ]
机构
[1] UNIV CALIF BERKELEY,DEPT ELECT ENGN & COMP SCI,BERKELEY,CA 94720
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper we develop the theory of symbolic dynamics on piecewise-linear maps. We prove several results concerning periodic points and admissible periodic sequences and show how this theory is used on maps which are composed of signum functions by means of two examples in signal processing, namely digital filters with overflow nonlinearity and sigma-delta modulators. For example, we show that in the double-loop sigma-delta modulator with a two-bit quantizer, the set of initial conditions which generate periodic output has zero measure for any constant input, in contrast to the single-loop sigma-delta modulator.
引用
收藏
页码:420 / 424
页数:5
相关论文
共 50 条
  • [1] Piecewise-linear soliton equations and piecewise-linear integrable maps
    Quispel, GRW
    Capel, HW
    Scully, J
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (11): : 2491 - 2503
  • [2] INTERPOLATION OF CONTINUOUS MAPS BY PIECEWISE-LINEAR MAPS
    BABENKO, VF
    [J]. MATHEMATICAL NOTES, 1978, 24 (1-2) : 526 - 532
  • [3] Periodic trajectories in piecewise-linear maps
    Mitrovski, CD
    Kocarev, LM
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 2001, 48 (10): : 1244 - 1246
  • [4] Hierarchical symbolic piecewise-linear circuit analysis
    Yang, JJ
    Tan, SXD
    Qi, ZY
    Gawecki, M
    [J]. BMAS 2005: PROCEEDINGS OF THE 2005 IEEE INTERNATIONAL BEHAVIORAL MODELING AND SIMULATION WORKSHOP, 2005, : 140 - 145
  • [5] CHAOTIFYING 2-D PIECEWISE-LINEAR MAPS VIA A PIECEWISE-LINEAR CONTROLLER FUNCTION
    Elhadj, Z.
    Sprott, J. C.
    [J]. NONLINEAR OSCILLATIONS, 2011, 13 (03): : 352 - 360
  • [6] DIFFUSION-COEFFICIENT OF PIECEWISE-LINEAR MAPS
    CHEN, CC
    [J]. PHYSICAL REVIEW E, 1995, 51 (04): : 2815 - 2822
  • [7] ORDER AND CHAOS FOR A CLASS OF PIECEWISE-LINEAR MAPS
    LOPEZ, VJ
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1995, 5 (05): : 1379 - 1394
  • [8] GRASSMANNIANS AND GAUSS MAPS IN PIECEWISE-LINEAR TOPOLOGY
    LEVITT, N
    [J]. LECTURE NOTES IN MATHEMATICS, 1989, 1366 : 1 - 203
  • [9] DYNAMICS OF SYNCHRONIZATION WITH PIECEWISE-LINEAR CHARACTERISTICS
    GRIBOV, AF
    PETRUSHINA, IB
    SHAKHTARIN, BI
    [J]. ENGINEERING CYBERNETICS, 1981, 19 (01): : 145 - 147
  • [10] SYNCHRONIZATION OF A NETWORK WITH PIECEWISE-LINEAR DYNAMICS
    Gall, Walter
    Zhou, Ying
    Salisbury, Joseph
    [J]. PROCEEDINGS OF THE ASME DYNAMIC SYSTEMS AND CONTROL CONFERENCE 2010, VOL 1, 2010, : 297 - 303