Analytical description of critical dynamics for two-dimensional dissipative nonlinear maps

被引:3
|
作者
Mendez-Bermudez, J. A. [1 ]
de Oliveira, Juliano A. [2 ]
Leonel, Edson D. [3 ,4 ]
机构
[1] Benemerita Univ Autonoma Puebla, Inst Fis, Apartado Postal J-48, Puebla 72570, Mexico
[2] UNESP Univ Estadual Paulista, Campus Sao Joao da Boa Vista, BR-13876750 Sao Joao Da Boa Vista, SP, Brazil
[3] UNESP Univ Estadual Paulista, Dept Fis, BR-13506900 Rio Claro, SP, Brazil
[4] Abdus Salam Int Ctr Theoret Phys, Str Costiera 11, I-34151 Trieste, Italy
基金
巴西圣保罗研究基金会;
关键词
Dissipative dynamics; Nonlinear map; Scaling; STRANGE ATTRACTORS; SCALING PROPERTIES; STATISTICAL PROPERTIES; ACCELERATOR MODEL; BOUNCER MODEL; STANDARD MAP; SYSTEMS; LOCALIZATION; DISTRIBUTIONS; TRANSIENT;
D O I
10.1016/j.physleta.2016.04.005
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The critical dynamics near the transition from unlimited to limited action diffusion for two families of well known dissipative nonlinear maps, namely the dissipative standard and dissipative discontinuous maps, is characterized by the use of an analytical approach. The approach is applied to explicitly obtain the average squared action as a function of the (discrete) time and the parameters controlling nonlinearity and dissipation. This allows to obtain a set of critical exponents so far obtained numerically in the literature. The theoretical predictions are verified by extensive numerical simulations. We conclude that all possible dynamical cases, independently on the map parameter values and initial conditions, collapse into the universal exponential decay of the properly normalized average squared action as a function of a normalized time. The formalism developed here can be extended to many other different types of mappings therefore making the methodology generic and robust. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:1959 / 1963
页数:5
相关论文
共 50 条
  • [1] On the dynamics of two-dimensional dissipative discontinuous maps
    Perre, Rodrigo M.
    Carneiro, Barbara P.
    Mendez-Bermudez, J. A.
    Leonel, Edson D.
    de Oliveira, Juliano A.
    CHAOS SOLITONS & FRACTALS, 2020, 131
  • [2] SOME SYMMETRIC, TWO-DIMENSIONAL, DISSIPATIVE MAPS
    FROYLAND, J
    PHYSICA D, 1983, 8 (03): : 423 - 434
  • [3] Two-dimensional dissipative maps at chaos threshold: sensitivity to initial conditions and relaxation dynamics
    Borges, EP
    Tirnakli, U
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 340 (1-3) : 227 - 233
  • [4] TWO-DIMENSIONAL DYNAMICS OF CUBIC MAPS
    Djellit, I.
    Selmani, W.
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2021, 45 (03): : 427 - 438
  • [5] A Perturbation Method for Nonlinear Two-Dimensional Maps
    Attilio Maccari
    Nonlinear Dynamics, 1999, 19 : 295 - 312
  • [6] A perturbation method for nonlinear two-dimensional maps
    Maccari, A
    NONLINEAR DYNAMICS, 1999, 19 (04) : 295 - 312
  • [7] Critical behavior of dissipative two-dimensional spin lattices
    Rota, R.
    Storme, F.
    Bartolo, N.
    Fazio, R.
    Ciuti, C.
    PHYSICAL REVIEW B, 2017, 95 (13)
  • [8] Nonlinear waves in dissipative microstructured two-dimensional solids
    Casasso, Alessia
    Pastrone, Franco
    Samsonov, Alexander M.
    PROCEEDINGS OF THE ESTONIAN ACADEMY OF SCIENCES-PHYSICS MATHEMATICS, 2007, 56 (02): : 75 - 83
  • [9] Chaotic dynamics exhibited by two-dimensional maps
    Awrejcewicz, J.
    Lamarque, C.H.
    Journal of Technical Physics, 37 (3-4):
  • [10] Chaotic dynamics for two-dimensional tent maps
    Pumarino, Antonio
    Angel Rodriguez, Jose
    Carles Tatjer, Joan
    Vigil, Enrique
    NONLINEARITY, 2015, 28 (02) : 407 - 434