On the dynamics of two-dimensional dissipative discontinuous maps

被引:3
|
作者
Perre, Rodrigo M. [1 ]
Carneiro, Barbara P. [2 ]
Mendez-Bermudez, J. A. [3 ,4 ]
Leonel, Edson D. [2 ]
de Oliveira, Juliano A. [1 ,2 ,5 ]
机构
[1] Univ Estadual Paulista, UNESP, Campus Sao Joao da Boa Vista, BR-13876750 Sao Joao Da Boa Vista, SP, Brazil
[2] Univ Estadual Paulista, Dept Fis, UNESP, Av-24A,1515, BR-13506900 Rio Claro, SP, Brazil
[3] Univ Sao Paulo, Inst Ciencias Matemat & Comp, Dept Matemat Aplicada & Estat, Campus Sao Carlos,Caixa Postal 668, BR-13560970 Sao Carlos, SP, Brazil
[4] Benemerita Univ Autonoma Puebla, Inst Fis, Apartado Postal J-48, Puebla 72570, Mexico
[5] Abdus Salam Int Ctr Theoret Phys, Str Costiera 11, I-34151 Trieste, Italy
基金
巴西圣保罗研究基金会;
关键词
Dissipative discontinuous standard mapping; Chaotic attractors; Lyapunov exponents; MAPPINGS; CHAOS; MODEL;
D O I
10.1016/j.chaos.2019.109520
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Some dynamical properties for a dissipative two-dimensional discontinuous standard mapping are considered. The mapping, in action-angle variables, is parameterized by two control parameters; namely, k >= 0 controlling the intensity of the nonlinearity and gamma is an element of [0, 1] representing the dissipation. The case of gamma = 0 recovers the non-dissipative model while any gamma not equal 0 yields to the breaking of area preservation; hence leading to the existence of attractors, including chaotic ones. We show that when starting from a large initial action, the dynamics converges to chaotic attractors through an exponential decay in time, while the speed of the decay depends on the dissipation intensity. We also investigate the positive Lyapunov exponents and describe their behavior as a function of the control parameters. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Analytical description of critical dynamics for two-dimensional dissipative nonlinear maps
    Mendez-Bermudez, J. A.
    de Oliveira, Juliano A.
    Leonel, Edson D.
    PHYSICS LETTERS A, 2016, 380 (22-23) : 1959 - 1963
  • [2] SOME SYMMETRIC, TWO-DIMENSIONAL, DISSIPATIVE MAPS
    FROYLAND, J
    PHYSICA D, 1983, 8 (03): : 423 - 434
  • [3] Two-dimensional dissipative maps at chaos threshold: sensitivity to initial conditions and relaxation dynamics
    Borges, EP
    Tirnakli, U
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 340 (1-3) : 227 - 233
  • [4] Pseudo-boundaries in discontinuous two-dimensional maps
    Farago, O
    Kantor, Y
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (02): : 445 - 451
  • [5] TWO-DIMENSIONAL DYNAMICS OF CUBIC MAPS
    Djellit, I.
    Selmani, W.
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2021, 45 (03): : 427 - 438
  • [6] Bifurcation phenomena in two-dimensional piecewise smooth discontinuous maps
    Rakshit, Biswambhar
    Apratim, Manjul
    Banerjee, Soumitro
    CHAOS, 2010, 20 (03)
  • [7] Chaotic dynamics exhibited by two-dimensional maps
    Awrejcewicz, J.
    Lamarque, C.H.
    Journal of Technical Physics, 37 (3-4):
  • [8] Chaotic dynamics for two-dimensional tent maps
    Pumarino, Antonio
    Angel Rodriguez, Jose
    Carles Tatjer, Joan
    Vigil, Enrique
    NONLINEARITY, 2015, 28 (02) : 407 - 434
  • [10] One-dimensional and two-dimensional dynamics of cubic maps
    Ilhem, Djellit
    Amel, Kara
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2006, 2006