On the dynamics of two-dimensional dissipative discontinuous maps

被引:3
|
作者
Perre, Rodrigo M. [1 ]
Carneiro, Barbara P. [2 ]
Mendez-Bermudez, J. A. [3 ,4 ]
Leonel, Edson D. [2 ]
de Oliveira, Juliano A. [1 ,2 ,5 ]
机构
[1] Univ Estadual Paulista, UNESP, Campus Sao Joao da Boa Vista, BR-13876750 Sao Joao Da Boa Vista, SP, Brazil
[2] Univ Estadual Paulista, Dept Fis, UNESP, Av-24A,1515, BR-13506900 Rio Claro, SP, Brazil
[3] Univ Sao Paulo, Inst Ciencias Matemat & Comp, Dept Matemat Aplicada & Estat, Campus Sao Carlos,Caixa Postal 668, BR-13560970 Sao Carlos, SP, Brazil
[4] Benemerita Univ Autonoma Puebla, Inst Fis, Apartado Postal J-48, Puebla 72570, Mexico
[5] Abdus Salam Int Ctr Theoret Phys, Str Costiera 11, I-34151 Trieste, Italy
基金
巴西圣保罗研究基金会;
关键词
Dissipative discontinuous standard mapping; Chaotic attractors; Lyapunov exponents; MAPPINGS; CHAOS; MODEL;
D O I
10.1016/j.chaos.2019.109520
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Some dynamical properties for a dissipative two-dimensional discontinuous standard mapping are considered. The mapping, in action-angle variables, is parameterized by two control parameters; namely, k >= 0 controlling the intensity of the nonlinearity and gamma is an element of [0, 1] representing the dissipation. The case of gamma = 0 recovers the non-dissipative model while any gamma not equal 0 yields to the breaking of area preservation; hence leading to the existence of attractors, including chaotic ones. We show that when starting from a large initial action, the dynamics converges to chaotic attractors through an exponential decay in time, while the speed of the decay depends on the dissipation intensity. We also investigate the positive Lyapunov exponents and describe their behavior as a function of the control parameters. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] Two-dimensional solitons and clusters in dissipative lattices
    Zhu, Weiling
    He, Yingji
    Malomed, Boris A.
    Mihalache, Dumitru
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2014, 31 (06) : A1 - A5
  • [32] Dissipative properties of relativistic two-dimensional gases
    Garcia-Perciante, A. L.
    Mendez, A. R.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2019, 530
  • [33] Dissipative vortex solitons in two-dimensional lattices
    Mejia-Cortes, C.
    Soto-Crespo, J. M.
    Molina, Mario I.
    Vicencio, Rodrigo A.
    PHYSICAL REVIEW A, 2010, 82 (06):
  • [34] Photoswitchable Dissipative Two-Dimensional Colloidal Crystals
    Vialetto, Jacopo
    Anyfantakis, Manos
    Rudiuk, Sergii
    Morel, Mathieu
    Baigl, Damien
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (27) : 9145 - 9149
  • [35] Grammatical complexity for two-dimensional maps
    Hagiwara, R
    Shudo, A
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (44): : 10545 - 10559
  • [36] Frameworks for two-dimensional Keller maps
    Borisov, Alexander
    ELECTRONIC JOURNAL OF COMBINATORICS, 2020, 27 (03):
  • [37] Application of two-dimensional discontinuous deformation analysis
    Shi, G. H.
    HARMONISING ROCK ENGINEERING AND THE ENVIRONMENT, 2012, : 523 - 529
  • [38] Dynamics of two-dimensional dissipative spatial solitons interacting with an umbrella-shaped potential
    Yin, Chengping
    Mihalache, Dumitru
    He, Yingji
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2011, 28 (02) : 342 - 346
  • [39] A practical method to avoid bond crossing in two-dimensional dissipative particle dynamics simulations
    Liu, Hong
    Xue, Yao-Hong
    Qian, Hu-Jun
    Lu, Zhong-Yuan
    Sun, Chia-Chung
    JOURNAL OF CHEMICAL PHYSICS, 2008, 129 (02):
  • [40] A family of dissipative two-dimensional mappings: Chaotic, regular and steady state dynamics investigation
    Kuwana, Celia Mayumi
    de Oliveira, Juliano A.
    Leonel, Edson D.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2014, 395 : 458 - 465