On the dynamics of two-dimensional dissipative discontinuous maps

被引:3
|
作者
Perre, Rodrigo M. [1 ]
Carneiro, Barbara P. [2 ]
Mendez-Bermudez, J. A. [3 ,4 ]
Leonel, Edson D. [2 ]
de Oliveira, Juliano A. [1 ,2 ,5 ]
机构
[1] Univ Estadual Paulista, UNESP, Campus Sao Joao da Boa Vista, BR-13876750 Sao Joao Da Boa Vista, SP, Brazil
[2] Univ Estadual Paulista, Dept Fis, UNESP, Av-24A,1515, BR-13506900 Rio Claro, SP, Brazil
[3] Univ Sao Paulo, Inst Ciencias Matemat & Comp, Dept Matemat Aplicada & Estat, Campus Sao Carlos,Caixa Postal 668, BR-13560970 Sao Carlos, SP, Brazil
[4] Benemerita Univ Autonoma Puebla, Inst Fis, Apartado Postal J-48, Puebla 72570, Mexico
[5] Abdus Salam Int Ctr Theoret Phys, Str Costiera 11, I-34151 Trieste, Italy
基金
巴西圣保罗研究基金会;
关键词
Dissipative discontinuous standard mapping; Chaotic attractors; Lyapunov exponents; MAPPINGS; CHAOS; MODEL;
D O I
10.1016/j.chaos.2019.109520
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Some dynamical properties for a dissipative two-dimensional discontinuous standard mapping are considered. The mapping, in action-angle variables, is parameterized by two control parameters; namely, k >= 0 controlling the intensity of the nonlinearity and gamma is an element of [0, 1] representing the dissipation. The case of gamma = 0 recovers the non-dissipative model while any gamma not equal 0 yields to the breaking of area preservation; hence leading to the existence of attractors, including chaotic ones. We show that when starting from a large initial action, the dynamics converges to chaotic attractors through an exponential decay in time, while the speed of the decay depends on the dissipation intensity. We also investigate the positive Lyapunov exponents and describe their behavior as a function of the control parameters. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Dissipative Homoclinic Loops of Two-Dimensional Maps and Strange Attractors with One Direction of Instability
    Wang, Qiudong
    Ott, William
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2011, 64 (11) : 1439 - 1496
  • [22] Dissipative two-dimensional Raman lattice
    Li, Haowei
    Yi, Wei
    PHYSICAL REVIEW A, 2023, 107 (01)
  • [23] Two-dimensional beams of dissipative antisolitons
    Ankiewicz, A.
    Soto-Crespo, J. M.
    Devine, N.
    Akhmediev, N.
    COMPLEX SYSTEMS II, 2008, 6802
  • [24] Two-dimensional dissipative gap solitons
    Sakaguchi, Hidetsugu
    Malomed, Boris A.
    PHYSICAL REVIEW E, 2009, 80 (02):
  • [25] On maps of the two-dimensional sphere
    Shchepin, EV
    RUSSIAN MATHEMATICAL SURVEYS, 2003, 58 (06) : 1218 - 1219
  • [26] Thermofield Dynamics for Two-Dimensional Dissipative Mesoscopic Circuit Coupled to a Power Source
    Choi, Jeong Ryeol
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2010, 79 (04)
  • [27] COMPUTATION OF SYMBOLIC DYNAMICS FOR TWO-DIMENSIONAL PIECEWISE-AFFINE MAPS
    Sella, Lorenzo
    Collins, Pieter
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2011, 15 (03): : 739 - 767
  • [28] Two-Dimensional Discrete Memristive Oscillatory Hyperchaotic Maps With Diverse Dynamics
    Lai, Qiang
    Yang, Liang
    Chen, Guanrong
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2025, 72 (01) : 969 - 979
  • [29] Advances in Two-Dimensional Discontinuous Deformation Analysis for Rock-Mass Dynamics
    Ning, Youjun
    Yang, Zheng
    Wei, Bin
    Gu, Bin
    INTERNATIONAL JOURNAL OF GEOMECHANICS, 2017, 17 (05)
  • [30] STABILITY OF TWO-DIMENSIONAL QUASIHARMONIC DISSIPATIVE STRUCTURES
    MALOMED, BA
    STAROSELSKY, IE
    PHYSICS LETTERS A, 1983, 99 (04) : 145 - 146