On the dynamics of two-dimensional dissipative discontinuous maps

被引:3
|
作者
Perre, Rodrigo M. [1 ]
Carneiro, Barbara P. [2 ]
Mendez-Bermudez, J. A. [3 ,4 ]
Leonel, Edson D. [2 ]
de Oliveira, Juliano A. [1 ,2 ,5 ]
机构
[1] Univ Estadual Paulista, UNESP, Campus Sao Joao da Boa Vista, BR-13876750 Sao Joao Da Boa Vista, SP, Brazil
[2] Univ Estadual Paulista, Dept Fis, UNESP, Av-24A,1515, BR-13506900 Rio Claro, SP, Brazil
[3] Univ Sao Paulo, Inst Ciencias Matemat & Comp, Dept Matemat Aplicada & Estat, Campus Sao Carlos,Caixa Postal 668, BR-13560970 Sao Carlos, SP, Brazil
[4] Benemerita Univ Autonoma Puebla, Inst Fis, Apartado Postal J-48, Puebla 72570, Mexico
[5] Abdus Salam Int Ctr Theoret Phys, Str Costiera 11, I-34151 Trieste, Italy
基金
巴西圣保罗研究基金会;
关键词
Dissipative discontinuous standard mapping; Chaotic attractors; Lyapunov exponents; MAPPINGS; CHAOS; MODEL;
D O I
10.1016/j.chaos.2019.109520
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Some dynamical properties for a dissipative two-dimensional discontinuous standard mapping are considered. The mapping, in action-angle variables, is parameterized by two control parameters; namely, k >= 0 controlling the intensity of the nonlinearity and gamma is an element of [0, 1] representing the dissipation. The case of gamma = 0 recovers the non-dissipative model while any gamma not equal 0 yields to the breaking of area preservation; hence leading to the existence of attractors, including chaotic ones. We show that when starting from a large initial action, the dynamics converges to chaotic attractors through an exponential decay in time, while the speed of the decay depends on the dissipation intensity. We also investigate the positive Lyapunov exponents and describe their behavior as a function of the control parameters. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] Coexistence of two dissipative mechanisms in two-dimensional turbulent flows
    Romain Nguyen Van Yen
    Farge, Marie
    Schneider, Kai
    13TH EUROPEAN TURBULENCE CONFERENCE (ETC13): STATISTICAL ASPECTS, MODELLING AND SIMULATIONS OF TURBULENCE, 2011, 318
  • [42] BIFURCATIONS OF ONE-DIMENSIONAL AND TWO-DIMENSIONAL MAPS
    HOLMES, P
    WHITLEY, D
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1984, 311 (1515): : 43 - 102
  • [43] Two-Dimensional Dissipative Control and Filtering for Roesser Model
    Ahn, Choon Ki
    Shi, Peng
    Basin, Michael V.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2015, 60 (07) : 1745 - 1759
  • [44] Spatiotemporal dissipative solitons in two-dimensional photonic lattices
    Mihalache, Dumitru
    Mazilu, Dumitru
    Lederer, Falk
    Kivshar, Yuri S.
    PHYSICAL REVIEW E, 2008, 78 (05):
  • [45] ON BOUNDED TWO-DIMENSIONAL GLOBALLY DISSIPATIVE EULER FLOWS
    Gebhard, Bjoern
    Kolumban, Jozsef J.
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2022, 54 (03) : 3457 - 3479
  • [46] Transport of macroparticles in dissipative two-dimensional Yukawa systems
    Vaulina, O. S.
    Dranzhevski, I. E.
    PHYSICA SCRIPTA, 2006, 73 (06) : 577 - 586
  • [47] SOME RESULTS ON THE TWO-DIMENSIONAL DISSIPATIVE EULER EQUATIONS
    Berselli, Luigi C.
    HYPERBOLIC PROBLEMS: THEORY, NUMERICS, APPLICATIONS, 2014, 8 : 325 - 332
  • [48] Nonlinear waves in dissipative microstructured two-dimensional solids
    Casasso, Alessia
    Pastrone, Franco
    Samsonov, Alexander M.
    PROCEEDINGS OF THE ESTONIAN ACADEMY OF SCIENCES-PHYSICS MATHEMATICS, 2007, 56 (02): : 75 - 83
  • [49] Basin structure in the two-dimensional dissipative circle map
    Hayase, Y
    Fukano, S
    Nakanishi, H
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2003, 72 (08) : 1943 - 1947
  • [50] Two-dimensional dissipative solitons supported by localized gain
    Kartashov, Yaroslav V.
    Konotop, Vladimir V.
    Vysloukh, Victor A.
    OPTICS LETTERS, 2011, 36 (01) : 82 - 84