Which lens spaces are distinguished by Turaev-Viro invariants

被引:4
|
作者
Sokolov, MV [1 ]
机构
[1] CHELYABINSK STATE UNIV,CHELYABINSK,RUSSIA
关键词
Turaev-Viro invariants; lens spaces; Jeffrey formula;
D O I
10.1007/BF02355426
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:384 / 387
页数:4
相关论文
共 50 条
  • [1] Which lens spaces are distinguished by Turaev-Viro invariants
    M. V. Sokolov
    [J]. Mathematical Notes, 1997, 61 : 384 - 387
  • [2] IDEAL TURAEV-VIRO INVARIANTS
    King, Simon A.
    [J]. SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2006, 3 : 62 - 66
  • [3] Ideal Turaev-Viro invariants
    King, Simon A.
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2007, 154 (06) : 1141 - 1156
  • [4] Growth of Turaev-Viro invariants and cabling
    Detcherry, Renaud
    [J]. JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2019, 28 (14)
  • [5] Turaev-Viro invariants and cabling operations
    Kumar, Sanjay
    Melby, Joseph M.
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS, 2023, 34 (11)
  • [6] Algorithms and Complexity for Turaev-Viro Invariants
    Burton, Benjamin A.
    Maria, Clement
    Spreer, Jonathan
    [J]. AUTOMATA, LANGUAGES, AND PROGRAMMING, PT I, 2015, 9134 : 281 - 293
  • [7] Skein theory and Turaev-Viro invariants
    Roberts, J
    [J]. TOPOLOGY, 1995, 34 (04) : 771 - 787
  • [8] Volume conjectures for the Reshetikhin-Turaev and the Turaev-Viro invariants
    Chen, Qingtao
    Yang, Tian
    [J]. QUANTUM TOPOLOGY, 2018, 9 (03) : 419 - 460
  • [9] KUPERBERG AND TURAEV-VIRO INVARIANTS IN UNIMODULAR CATEGORIES
    Costantino, Francesco
    Geer, Nathan
    Patureau-Mirand, Bertrand
    Turaev, Vladimir
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 2020, 306 (02) : 421 - 450
  • [10] Colored Turaev-Viro invariants of twist knots
    Koda, Yuya
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2009, 156 (03) : 577 - 593