Volume conjectures for the Reshetikhin-Turaev and the Turaev-Viro invariants

被引:25
|
作者
Chen, Qingtao [1 ]
Yang, Tian [2 ]
机构
[1] Swiss Fed Inst Technol, Dept Math, Ramistr 101, CH-8092 Zurich, Switzerland
[2] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
基金
瑞士国家科学基金会;
关键词
Reshetikhin-Turaev invariants; Turaev-Viro invariants; volume conjecture; COLORED JONES POLYNOMIALS; 3-MANIFOLD INVARIANTS; QUANTUM; KNOTS; LINKS; ASYMPTOTICS; PROOF;
D O I
10.4171/QT/111
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the asymptotics of the Turaev-Viro and the Reshetikhin-Turaev invariants of a hyperbolic 3-manifold, evaluated at the root of unity exp (2 pi root-1/r) instead of the standard exp (pi root-1/r). We present evidence that, as r tends to infinity, these invariants grow exponentially with growth rates respectively given by the hyperbolic and the complex volume of the manifold. This reveals an asymptotic behavior that is different from that of Witten's Asymptotic Expansion Conjecture, which predicts polynomial growth of these invariants when evaluated at the standard root of unity. This new phenomenon suggests that the Reshetikhin-Turaev invariants may have a geometric interpretation other than the original one via SU (2) Chern-Simons gauge theory.
引用
收藏
页码:419 / 460
页数:42
相关论文
共 50 条
  • [1] Recent Progresses on the Volume Conjectures for Reshetikhin-Turaev and Turaev-Viro Invariants
    Tian Yang
    [J]. Acta Mathematica Vietnamica, 2021, 46 : 389 - 398
  • [2] Recent Progresses on the Volume Conjectures for Reshetikhin-Turaev and Turaev-Viro Invariants
    Yang, Tian
    [J]. ACTA MATHEMATICA VIETNAMICA, 2021, 46 (02) : 389 - 398
  • [3] IDEAL TURAEV-VIRO INVARIANTS
    King, Simon A.
    [J]. SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2006, 3 : 62 - 66
  • [4] Ideal Turaev-Viro invariants
    King, Simon A.
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2007, 154 (06) : 1141 - 1156
  • [5] Growth of Turaev-Viro invariants and cabling
    Detcherry, Renaud
    [J]. JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2019, 28 (14)
  • [6] Turaev-Viro invariants, colored Jones polynomials, and volume
    Detcherry, Renaud
    Kalfagianni, Efstratia
    Yang, Tian
    [J]. QUANTUM TOPOLOGY, 2018, 9 (04) : 775 - 813
  • [7] Turaev-Viro invariants and cabling operations
    Kumar, Sanjay
    Melby, Joseph M.
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS, 2023, 34 (11)
  • [8] Algorithms and Complexity for Turaev-Viro Invariants
    Burton, Benjamin A.
    Maria, Clement
    Spreer, Jonathan
    [J]. AUTOMATA, LANGUAGES, AND PROGRAMMING, PT I, 2015, 9134 : 281 - 293
  • [9] Skein theory and Turaev-Viro invariants
    Roberts, J
    [J]. TOPOLOGY, 1995, 34 (04) : 771 - 787
  • [10] KUPERBERG AND TURAEV-VIRO INVARIANTS IN UNIMODULAR CATEGORIES
    Costantino, Francesco
    Geer, Nathan
    Patureau-Mirand, Bertrand
    Turaev, Vladimir
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 2020, 306 (02) : 421 - 450