Turaev-Viro invariants and cabling operations

被引:0
|
作者
Kumar, Sanjay [1 ]
Melby, Joseph M. [2 ]
机构
[1] Univ Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USA
[2] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
关键词
Volume Conjecture; Turaev-Viro invariants; Reshetikhin-Turaev invariants; skein module; TQFT; 3-manifolds; cable space; COLORED JONES POLYNOMIALS; VOLUME; 3-MANIFOLDS;
D O I
10.1142/S0129167X23500659
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the variation of the Turaev-Viro invariants for 3-manifolds with toroidal boundary under the operation of attaching a (p,q)-cable space. We apply our results to a conjecture of Chen and Yang which relates the asymptotics of the Turaev-Viro invariants to the simplicial volume of a compact oriented 3-manifold. For p and q coprime, we show that the Chen-Yang volume conjecture is stable under (p,q)-cabling. We achieve our results by studying the linear operator RTr associated to the torus knot cable spaces by the Reshetikhin-Turaev SO3-Topological Quantum Field Theory (TQFT), where the TQFT is well-known to be closely related to the desired Turaev-Viro invariants. In particular, our utilized method relies on the invertibility of the linear operator for which we provide necessary and sufficient conditions.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Growth of Turaev-Viro invariants and cabling
    Detcherry, Renaud
    [J]. JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2019, 28 (14)
  • [2] IDEAL TURAEV-VIRO INVARIANTS
    King, Simon A.
    [J]. SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2006, 3 : 62 - 66
  • [3] Ideal Turaev-Viro invariants
    King, Simon A.
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2007, 154 (06) : 1141 - 1156
  • [4] Algorithms and Complexity for Turaev-Viro Invariants
    Burton, Benjamin A.
    Maria, Clement
    Spreer, Jonathan
    [J]. AUTOMATA, LANGUAGES, AND PROGRAMMING, PT I, 2015, 9134 : 281 - 293
  • [5] Skein theory and Turaev-Viro invariants
    Roberts, J
    [J]. TOPOLOGY, 1995, 34 (04) : 771 - 787
  • [6] Volume conjectures for the Reshetikhin-Turaev and the Turaev-Viro invariants
    Chen, Qingtao
    Yang, Tian
    [J]. QUANTUM TOPOLOGY, 2018, 9 (03) : 419 - 460
  • [7] KUPERBERG AND TURAEV-VIRO INVARIANTS IN UNIMODULAR CATEGORIES
    Costantino, Francesco
    Geer, Nathan
    Patureau-Mirand, Bertrand
    Turaev, Vladimir
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 2020, 306 (02) : 421 - 450
  • [8] Colored Turaev-Viro invariants of twist knots
    Koda, Yuya
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2009, 156 (03) : 577 - 593
  • [9] COMPUTING TURAEV-VIRO INVARIANTS FOR 3-MANIFOLDS
    KAUFFMAN, LH
    LINS, S
    [J]. MANUSCRIPTA MATHEMATICA, 1991, 72 (01) : 81 - 94
  • [10] Which lens spaces are distinguished by Turaev-Viro invariants
    Sokolov, MV
    [J]. MATHEMATICAL NOTES, 1997, 61 (3-4) : 384 - 387