Turaev-Viro invariants and cabling operations

被引:0
|
作者
Kumar, Sanjay [1 ]
Melby, Joseph M. [2 ]
机构
[1] Univ Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USA
[2] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
关键词
Volume Conjecture; Turaev-Viro invariants; Reshetikhin-Turaev invariants; skein module; TQFT; 3-manifolds; cable space; COLORED JONES POLYNOMIALS; VOLUME; 3-MANIFOLDS;
D O I
10.1142/S0129167X23500659
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the variation of the Turaev-Viro invariants for 3-manifolds with toroidal boundary under the operation of attaching a (p,q)-cable space. We apply our results to a conjecture of Chen and Yang which relates the asymptotics of the Turaev-Viro invariants to the simplicial volume of a compact oriented 3-manifold. For p and q coprime, we show that the Chen-Yang volume conjecture is stable under (p,q)-cabling. We achieve our results by studying the linear operator RTr associated to the torus knot cable spaces by the Reshetikhin-Turaev SO3-Topological Quantum Field Theory (TQFT), where the TQFT is well-known to be closely related to the desired Turaev-Viro invariants. In particular, our utilized method relies on the invertibility of the linear operator for which we provide necessary and sufficient conditions.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] Modified Turaev-Viro invariants from quantum sl(2|1)
    Anghel, Cristina Ana-Maria
    Geer, Nathan
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2020, 29 (04)
  • [22] Asymptotic additivity of the Turaev-Viro invariants for a family of 3-manifolds
    Kumar, Sanjay
    Melby, Joseph M.
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2022, 106 (04): : 3043 - 3068
  • [23] On a simple invariant of Turaev-Viro type
    S. V. Matveev
    M. V. Sokolov
    Journal of Mathematical Sciences, 1999, 94 (2) : 1226 - 1229
  • [24] On the computation of the Turaev-Viro module of a knot
    Abchir, H
    Blanchet, C
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 1998, 7 (07) : 843 - 856
  • [25] Estimating Turaev-Viro three-manifold invariants is universal for quantum computation
    Alagic, Gorjan
    Jordan, Stephen P.
    Koenig, Robert
    Reichardt, Ben W.
    PHYSICAL REVIEW A, 2010, 82 (04):
  • [26] Quantum computation with Turaev-Viro codes
    Koenig, Robert
    Kuperberg, Greg
    Reichardt, Ben W.
    ANNALS OF PHYSICS, 2010, 325 (12) : 2707 - 2749
  • [27] Abelian BF theory and Turaev-Viro invariant
    Mathieu, P.
    Thuillier, F.
    JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (02)
  • [28] (2+1)-Dimensional TQFT Model for Colored Turaev-Viro Invariants
    Koda, Yuya
    Taniguchi, Taiji
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2013, 2013 (01) : 218 - 242
  • [29] Asymptotic behavior of the colored Jones polynomials and Turaev-Viro invariants of the figure eight knot
    Wong, Ka Ho
    Au, Thomas Kwok-Keung
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2022, 22 (01): : 1 - 53
  • [30] A relative version of the Turaev-Viro invariants and the volume of hyperbolic polyhedral 3-manifolds
    Yang, Tian
    JOURNAL OF TOPOLOGY, 2023, 16 (02) : 650 - 678