Quantum computation with Turaev-Viro codes

被引:76
|
作者
Koenig, Robert [1 ]
Kuperberg, Greg [2 ]
Reichardt, Ben W. [3 ]
机构
[1] CALTECH, Inst Quantum Informat, Pasadena, CA 91125 USA
[2] Univ Calif Davis, Dept Math, Davis, CA 95616 USA
[3] Univ Waterloo, Sch Comp Sci, Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Quantum error-correcting codes; Fault-tolerant quantum computation; Topological quantum computation; Turaev-Viro invariant; INVARIANTS; 3-MANIFOLDS; SUBFACTORS; CATEGORIES; ANYONS;
D O I
10.1016/j.aop.2010.08.001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
For a 3-manifold with triangulated boundary, the Turaev-Viro topological invariant can be interpreted as a quantum error-correcting code. The code has local stabilizers, identified by Levin and Wen, on a qudit lattice. Kitaev's toric code arises as a special case. The toric code corresponds to an abelian anyon model, and therefore requires out-of-code operations to obtain universal quantum computation. In contrast, for many categories, such as the Fibonacci category, the Turaev-Viro code realizes a non-abelian anyon model. A universal set of fault-tolerant operations can be implemented by deforming the code with local gates, in order to implement anyon braiding. We identify the anyons in the code space, and present schemes for initialization, computation and measurement. This provides a family of constructions for fault-tolerant quantum computation that are closely related to topological quantum computation, but for which the fault tolerance is implemented in software rather than coming from a physical medium. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:2707 / 2749
页数:43
相关论文
共 50 条
  • [1] On the computation of the Turaev-Viro module of a knot
    Abchir, H
    Blanchet, C
    [J]. JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 1998, 7 (07) : 843 - 856
  • [2] Estimating Turaev-Viro three-manifold invariants is universal for quantum computation
    Alagic, Gorjan
    Jordan, Stephen P.
    Koenig, Robert
    Reichardt, Ben W.
    [J]. PHYSICAL REVIEW A, 2010, 82 (04):
  • [3] IDEAL TURAEV-VIRO INVARIANTS
    King, Simon A.
    [J]. SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2006, 3 : 62 - 66
  • [4] Ideal Turaev-Viro invariants
    King, Simon A.
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2007, 154 (06) : 1141 - 1156
  • [5] Possible Universal Quantum Algorithms for Generalized Turaev-Viro invariants
    Velez, Mario
    Ospina, Juan
    [J]. QUANTUM INFORMATION AND COMPUTATION IX, 2011, 8057
  • [6] On a simple invariant of Turaev-Viro type
    S. V. Matveev
    M. V. Sokolov
    [J]. Journal of Mathematical Sciences, 1999, 94 (2) : 1226 - 1229
  • [7] Growth of Turaev-Viro invariants and cabling
    Detcherry, Renaud
    [J]. JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2019, 28 (14)
  • [8] Turaev-Viro invariants and cabling operations
    Kumar, Sanjay
    Melby, Joseph M.
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS, 2023, 34 (11)
  • [9] Algorithms and Complexity for Turaev-Viro Invariants
    Burton, Benjamin A.
    Maria, Clement
    Spreer, Jonathan
    [J]. AUTOMATA, LANGUAGES, AND PROGRAMMING, PT I, 2015, 9134 : 281 - 293
  • [10] Skein theory and Turaev-Viro invariants
    Roberts, J
    [J]. TOPOLOGY, 1995, 34 (04) : 771 - 787