Ideal Turaev-Viro invariants

被引:3
|
作者
King, Simon A. [1 ]
机构
[1] Math Forschungsinst Oberwolfach, D-77709 Oberwolfach Walke, Germany
关键词
Turaev-Viro invariant; Grobner basis; quantum invariant; special spine;
D O I
10.1016/j.topol.2006.11.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Turaev-Viro invariants are defined via state sum polynomials associated to a special spine or a triangulation of a compact 3-manifold. By evaluation of the state sum at any solution of the so-called Biedenharn-Elliott equations, one obtains a homeo-morphism invariant of the manifold ("numerical Turaev-Viro invariant"). The Biedenharn-Elliott equations define a polynomial ideal. The key observation of this paper is that the coset of the state sum polynomial with respect to that ideal is a homeomorphism invariant of the manifold ("ideal Turaev-Viro invariant'), stronger than the numerical Turaev-Viro invariants. Using computer algebra, we obtain computational results on several examples of ideal Turaev-Viro invariants, for all closed orientable irreducible manifolds of complexity at most 9. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:1141 / 1156
页数:16
相关论文
共 50 条
  • [1] IDEAL TURAEV-VIRO INVARIANTS
    King, Simon A.
    [J]. SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2006, 3 : 62 - 66
  • [2] Growth of Turaev-Viro invariants and cabling
    Detcherry, Renaud
    [J]. JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2019, 28 (14)
  • [3] Turaev-Viro invariants and cabling operations
    Kumar, Sanjay
    Melby, Joseph M.
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS, 2023, 34 (11)
  • [4] Algorithms and Complexity for Turaev-Viro Invariants
    Burton, Benjamin A.
    Maria, Clement
    Spreer, Jonathan
    [J]. AUTOMATA, LANGUAGES, AND PROGRAMMING, PT I, 2015, 9134 : 281 - 293
  • [5] Skein theory and Turaev-Viro invariants
    Roberts, J
    [J]. TOPOLOGY, 1995, 34 (04) : 771 - 787
  • [6] Volume conjectures for the Reshetikhin-Turaev and the Turaev-Viro invariants
    Chen, Qingtao
    Yang, Tian
    [J]. QUANTUM TOPOLOGY, 2018, 9 (03) : 419 - 460
  • [7] KUPERBERG AND TURAEV-VIRO INVARIANTS IN UNIMODULAR CATEGORIES
    Costantino, Francesco
    Geer, Nathan
    Patureau-Mirand, Bertrand
    Turaev, Vladimir
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 2020, 306 (02) : 421 - 450
  • [8] Colored Turaev-Viro invariants of twist knots
    Koda, Yuya
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2009, 156 (03) : 577 - 593
  • [9] COMPUTING TURAEV-VIRO INVARIANTS FOR 3-MANIFOLDS
    KAUFFMAN, LH
    LINS, S
    [J]. MANUSCRIPTA MATHEMATICA, 1991, 72 (01) : 81 - 94
  • [10] Which lens spaces are distinguished by Turaev-Viro invariants
    Sokolov, MV
    [J]. MATHEMATICAL NOTES, 1997, 61 (3-4) : 384 - 387