Turaev-Viro invariants and cabling operations

被引:0
|
作者
Kumar, Sanjay [1 ]
Melby, Joseph M. [2 ]
机构
[1] Univ Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USA
[2] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
关键词
Volume Conjecture; Turaev-Viro invariants; Reshetikhin-Turaev invariants; skein module; TQFT; 3-manifolds; cable space; COLORED JONES POLYNOMIALS; VOLUME; 3-MANIFOLDS;
D O I
10.1142/S0129167X23500659
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the variation of the Turaev-Viro invariants for 3-manifolds with toroidal boundary under the operation of attaching a (p,q)-cable space. We apply our results to a conjecture of Chen and Yang which relates the asymptotics of the Turaev-Viro invariants to the simplicial volume of a compact oriented 3-manifold. For p and q coprime, we show that the Chen-Yang volume conjecture is stable under (p,q)-cabling. We achieve our results by studying the linear operator RTr associated to the torus knot cable spaces by the Reshetikhin-Turaev SO3-Topological Quantum Field Theory (TQFT), where the TQFT is well-known to be closely related to the desired Turaev-Viro invariants. In particular, our utilized method relies on the invertibility of the linear operator for which we provide necessary and sufficient conditions.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] A TQFT of Turaev-Viro Type on Shaped Triangulations
    Kashaev, Rinat
    Luo, Feng
    Vartanov, Grigory
    [J]. ANNALES HENRI POINCARE, 2016, 17 (05): : 1109 - 1143
  • [32] BTZ Black Hole Entropy and the Turaev-Viro Model
    Geiller, Marc
    Noui, Karim
    [J]. ANNALES HENRI POINCARE, 2015, 16 (02): : 609 - 640
  • [33] Towards the Turaev-Viro amplitudes from a Hamiltonian constraint
    Bonzom, Valentin
    Dupuis, Maite
    Girelli, Florian
    [J]. PHYSICAL REVIEW D, 2014, 90 (10):
  • [34] SPIN NETWORKS, TURAEV-VIRO THEORY AND THE LOOP REPRESENTATION
    FOXON, TJ
    [J]. CLASSICAL AND QUANTUM GRAVITY, 1995, 12 (04) : 951 - 964
  • [35] Observables in the Turaev-Viro and Crane-Yetter models
    Barrett, John W.
    Martins, Joao Faria
    Garcia-Islas, J. Manuel
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (09)
  • [36] Turaev-Viro invariant and 3nj symbols
    Carbone, G
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2000, 41 (05) : 3068 - 3085
  • [37] Algorithms and complexity for Turaev–Viro invariants
    Burton B.A.
    Maria C.
    Spreer J.
    [J]. Journal of Applied and Computational Topology, 2018, 2 (1-2) : 33 - 53
  • [38] 3-DIMENSIONAL GRAVITY AND THE TURAEV-VIRO INVARIANT
    MIZOGUCHI, S
    TADA, T
    [J]. PROGRESS OF THEORETICAL PHYSICS SUPPLEMENT, 1992, (110): : 207 - 227
  • [39] 3-DIMENSIONAL GRAVITY FROM THE TURAEV-VIRO INVARIANT
    MIZOGUCHI, S
    TADA, T
    [J]. PHYSICAL REVIEW LETTERS, 1992, 68 (12) : 1795 - 1798
  • [40] A reciprocity formula from abelian BF and Turaev-Viro theories
    Mathieu, P.
    Thuillier, F.
    [J]. NUCLEAR PHYSICS B, 2016, 912 : 327 - 353