BTZ Black Hole Entropy and the Turaev-Viro Model

被引:3
|
作者
Geiller, Marc [1 ]
Noui, Karim [2 ,3 ]
机构
[1] Inst Gravitat & Cosmos Penn State, Dept Phys, State Coll, PA 16802 USA
[2] Univ Tours, Lab Math & Phys Theor, F-37200 Tours, France
[3] Univ Paris 07, Lab Astroparticule & Cosmol APC, F-75013 Paris, France
来源
ANNALES HENRI POINCARE | 2015年 / 16卷 / 02期
基金
美国国家科学基金会;
关键词
CONFORMAL FIELD-THEORY; STATE SUM INVARIANTS; 3-MANIFOLDS; GRAVITY;
D O I
10.1007/s00023-014-0331-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show the explicit agreement between the derivation of the Bekenstein-Hawking entropy of a Euclidean BTZ black hole from the point of view of spin foam models and canonical quantization. This is done by considering a graph observable (corresponding to the black hole horizon) in the Turaev-Viro state sum model, and then analytically continuing the resulting partition function to negative values of the cosmological constant.
引用
收藏
页码:609 / 640
页数:32
相关论文
共 50 条
  • [1] BTZ Black Hole Entropy and the Turaev–Viro Model
    Marc Geiller
    Karim Noui
    [J]. Annales Henri Poincaré, 2015, 16 : 609 - 640
  • [2] IDEAL TURAEV-VIRO INVARIANTS
    King, Simon A.
    [J]. SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2006, 3 : 62 - 66
  • [3] Ideal Turaev-Viro invariants
    King, Simon A.
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2007, 154 (06) : 1141 - 1156
  • [4] On a simple invariant of Turaev-Viro type
    S. V. Matveev
    M. V. Sokolov
    [J]. Journal of Mathematical Sciences, 1999, 94 (2) : 1226 - 1229
  • [5] On the computation of the Turaev-Viro module of a knot
    Abchir, H
    Blanchet, C
    [J]. JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 1998, 7 (07) : 843 - 856
  • [6] Growth of Turaev-Viro invariants and cabling
    Detcherry, Renaud
    [J]. JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2019, 28 (14)
  • [7] Turaev-Viro invariants and cabling operations
    Kumar, Sanjay
    Melby, Joseph M.
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS, 2023, 34 (11)
  • [8] Quantum computation with Turaev-Viro codes
    Koenig, Robert
    Kuperberg, Greg
    Reichardt, Ben W.
    [J]. ANNALS OF PHYSICS, 2010, 325 (12) : 2707 - 2749
  • [9] Algorithms and Complexity for Turaev-Viro Invariants
    Burton, Benjamin A.
    Maria, Clement
    Spreer, Jonathan
    [J]. AUTOMATA, LANGUAGES, AND PROGRAMMING, PT I, 2015, 9134 : 281 - 293
  • [10] Skein theory and Turaev-Viro invariants
    Roberts, J
    [J]. TOPOLOGY, 1995, 34 (04) : 771 - 787