Which lens spaces are distinguished by Turaev-Viro invariants

被引:5
|
作者
Sokolov, MV [1 ]
机构
[1] CHELYABINSK STATE UNIV,CHELYABINSK,RUSSIA
关键词
Turaev-Viro invariants; lens spaces; Jeffrey formula;
D O I
10.1007/BF02355426
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:384 / 387
页数:4
相关论文
共 50 条
  • [31] On the Turaev-Viro endomorphism and the colored Jones polynomial
    Cai, Xuanting
    Gilmer, Patrick M.
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2013, 13 (01): : 375 - 408
  • [32] BTZ Black Hole Entropy and the Turaev-Viro Model
    Geiller, Marc
    Noui, Karim
    ANNALES HENRI POINCARE, 2015, 16 (02): : 609 - 640
  • [33] Amplitudes for topology change in Turaev-Viro theory
    Ionicioiu, R
    CLASSICAL AND QUANTUM GRAVITY, 1998, 15 (07) : 1885 - 1894
  • [34] A TQFT of Turaev-Viro Type on Shaped Triangulations
    Kashaev, Rinat
    Luo, Feng
    Vartanov, Grigory
    ANNALES HENRI POINCARE, 2016, 17 (05): : 1109 - 1143
  • [35] Holonomy Observables for the Turaev-Viro Model of Quantum Gravity
    Silveira, V. M. G.
    Hadjimichef, D.
    Luna, E. G. S.
    Vasconcellos, Cesar A. Zen
    ASTRONOMISCHE NACHRICHTEN, 2025,
  • [36] Towards the Turaev-Viro amplitudes from a Hamiltonian constraint
    Bonzom, Valentin
    Dupuis, Maite
    Girelli, Florian
    PHYSICAL REVIEW D, 2014, 90 (10):
  • [37] SPIN NETWORKS, TURAEV-VIRO THEORY AND THE LOOP REPRESENTATION
    FOXON, TJ
    CLASSICAL AND QUANTUM GRAVITY, 1995, 12 (04) : 951 - 964
  • [38] Observables in the Turaev-Viro and Crane-Yetter models
    Barrett, John W.
    Martins, Joao Faria
    Garcia-Islas, J. Manuel
    JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (09)
  • [39] Turaev-Viro invariant and 3nj symbols
    Carbone, G
    JOURNAL OF MATHEMATICAL PHYSICS, 2000, 41 (05) : 3068 - 3085
  • [40] Algorithms and complexity for Turaev–Viro invariants
    Burton B.A.
    Maria C.
    Spreer J.
    Journal of Applied and Computational Topology, 2018, 2 (1-2) : 33 - 53