Depth-Aware CNN for RGB-D Segmentation

被引:175
|
作者
Wang, Weiyue [1 ]
Neumann, Ulrich [1 ]
机构
[1] Univ Southern Calif, Los Angeles, CA 90007 USA
来源
关键词
Geometry in CNN; RGB-D semantic segmentation;
D O I
10.1007/978-3-030-01252-6_9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Convolutional neural networks (CNN) are limited by the lack of capability to handle geometric information due to the fixed grid kernel structure. The availability of depth data enables progress in RGB-D semantic segmentation with CNNs. State-of-the-art methods either use depth as additional images or process spatial information in 3D volumes or point clouds. These methods suffer from high computation and memory cost. To address these issues, we present Depth-aware CNN by introducing two intuitive, flexible and effective operations: depth-aware convolution and depth-aware average pooling. By leveraging depth similarity between pixels in the process of information propagation, geometry is seamlessly incorporated into CNN. Without introducing any additional parameters, both operators can be easily integrated into existing CNNs. Extensive experiments and ablation studies on challenging RGBD semantic segmentation benchmarks validate the effectiveness and flexibility of our approach.
引用
收藏
页码:144 / 161
页数:18
相关论文
共 50 条
  • [21] Unsupervised Segmentation of RGB-D Images
    Deng, Zhuo
    Latecki, Longin Jan
    [J]. COMPUTER VISION - ACCV 2014, PT III, 2015, 9005 : 423 - 435
  • [22] RGB-D Segmentation of Poultry Entrails
    Philipsen, Mark Philip
    Jorgensen, Anders
    Escalera, Sergio
    Moeslund, Thomas B.
    [J]. ARTICULATED MOTION AND DEFORMABLE OBJECTS, 2016, 9756 : 168 - 174
  • [23] RGB-D SEMANTIC SEGMENTATION: A REVIEW
    Hu, Yaosi
    Chen, Zhenzhong
    Lin, Weiyao
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA & EXPO WORKSHOPS (ICMEW 2018), 2018,
  • [24] An improved mask R-CNN example segmentation algorithm based on RGB-D
    Li, Gongfa
    Li, Boao
    Jiang, Du
    Tao, Bo
    Yun, Juntong
    [J]. International Journal of Wireless and Mobile Computing, 2024, 26 (03) : 302 - 309
  • [25] Salient object segmentation based on depth-aware image layering
    Du, Huan
    Liu, Zhi
    Shi, Ran
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2019, 78 (09) : 12125 - 12138
  • [26] Salient object segmentation based on depth-aware image layering
    Huan Du
    Zhi Liu
    Ran Shi
    [J]. Multimedia Tools and Applications, 2019, 78 : 12125 - 12138
  • [27] Joining geometric and RGB features for RGB-D semantic segmentation
    Zhang, Shaopeng
    Zhong, Min
    Zeng, Gang
    Gan, Rui
    [J]. 2019 INTERNATIONAL CONFERENCE ON IMAGE AND VIDEO PROCESSING, AND ARTIFICIAL INTELLIGENCE, 2019, 11321
  • [28] ShapeConv: Shape-aware Convolutional Layer for Indoor RGB-D Semantic Segmentation
    Cao, Jinming
    Leng, Hanchao
    Lischinski, Dani
    Cohen-Or, Danny
    Tu, Changhe
    Li, Yangyan
    [J]. 2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 7068 - 7077
  • [29] Depth Error Elimination for RGB-D Cameras
    Gao, Yue
    Yang, You
    Zhen, Yi
    Dai, Qionghai
    [J]. ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2015, 6 (02)
  • [30] RGB-D SLAM with Deep Depth Completion
    Serhatoglu, Ali Osman
    Guclu, Oguzhan
    Can, Ahmet Burak
    [J]. ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, ICAISC 2022, PT II, 2023, 13589 : 59 - 67