Depth-Aware CNN for RGB-D Segmentation

被引:175
|
作者
Wang, Weiyue [1 ]
Neumann, Ulrich [1 ]
机构
[1] Univ Southern Calif, Los Angeles, CA 90007 USA
来源
关键词
Geometry in CNN; RGB-D semantic segmentation;
D O I
10.1007/978-3-030-01252-6_9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Convolutional neural networks (CNN) are limited by the lack of capability to handle geometric information due to the fixed grid kernel structure. The availability of depth data enables progress in RGB-D semantic segmentation with CNNs. State-of-the-art methods either use depth as additional images or process spatial information in 3D volumes or point clouds. These methods suffer from high computation and memory cost. To address these issues, we present Depth-aware CNN by introducing two intuitive, flexible and effective operations: depth-aware convolution and depth-aware average pooling. By leveraging depth similarity between pixels in the process of information propagation, geometry is seamlessly incorporated into CNN. Without introducing any additional parameters, both operators can be easily integrated into existing CNNs. Extensive experiments and ablation studies on challenging RGBD semantic segmentation benchmarks validate the effectiveness and flexibility of our approach.
引用
收藏
页码:144 / 161
页数:18
相关论文
共 50 条
  • [41] CNN-CA: Convolutional Neural Network Combined with Active Contour for Image RGB-D Segmentation
    Boussit, Yoann
    Fresse, Virginie
    Konik, Hubert
    Morand, Karynn
    [J]. PROCEEDINGS OF SEVENTH INTERNATIONAL CONGRESS ON INFORMATION AND COMMUNICATION TECHNOLOGY, VOL 4, 2023, 465 : 251 - 265
  • [42] Image Segmentation of Cabin Assembly Scene Based on Improved RGB-D Mask R-CNN
    Fu, Yichen
    Fan, Junfeng
    Xing, Shiyu
    Wang, Zhe
    Jing, Fengshui
    Tan, Min
    [J]. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [43] Structure Selective Depth Superresolution for RGB-D Cameras
    Kim, Youngjung
    Ham, Bumsub
    Oh, Changjae
    Sohn, Kwanghoon
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2016, 25 (11) : 5227 - 5238
  • [44] 2.5D CONVOLUTION FOR RGB-D SEMANTIC SEGMENTATION
    Xing, Yajie
    Wang, Jingbo
    Chen, Xiaokang
    Zeng, Gang
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 1410 - 1414
  • [45] Shape Preserving RGB-D Depth Map Restoration
    Liu, Wei
    Xue, Haoyang
    Gu, Yun
    Yang, Jie
    Wu, Qiang
    Jia, Zhenhong
    [J]. NEURAL INFORMATION PROCESSING, ICONIP 2014, PT III, 2014, 8836 : 150 - 158
  • [46] Unsupervised Depth Completion and Denoising for RGB-D Sensors
    Fan, Lei
    Li, Yunxuan
    Jiang, Chen
    Wu, Ying
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, ICRA 2022, 2022, : 8734 - 8740
  • [47] Genetic Algorithm for Depth Images in RGB-D Cameras
    Danciu, Gabriel
    Szekely, Iuliu
    [J]. 2014 IEEE 20TH INTERNATIONAL SYMPOSIUM FOR DESIGN AND TECHNOLOGY IN ELECTRONIC PACKAGING (SIITME), 2014, : 233 - 238
  • [48] Deep RGB-D Saliency Detection Without Depth
    Zhang, Yuan-fang
    Zheng, Jiangbin
    Jia, Wenjing
    Huang, Wenfeng
    Li, Long
    Liu, Nian
    Li, Fei
    He, Xiangjian
    [J]. IEEE TRANSACTIONS ON MULTIMEDIA, 2022, 24 : 755 - 767
  • [49] Deep Depth Completion of a Single RGB-D Image
    Zhang, Yinda
    Funkhouser, Thomas
    [J]. 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 175 - 185
  • [50] DEPTH ENHANCEMENT USING RGB-D GUIDED FILTERING
    Hui, Tak-Wai
    Ngan, King Ngi
    [J]. 2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2014, : 3832 - 3836