Depth-Aware CNN for RGB-D Segmentation

被引:175
|
作者
Wang, Weiyue [1 ]
Neumann, Ulrich [1 ]
机构
[1] Univ Southern Calif, Los Angeles, CA 90007 USA
来源
关键词
Geometry in CNN; RGB-D semantic segmentation;
D O I
10.1007/978-3-030-01252-6_9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Convolutional neural networks (CNN) are limited by the lack of capability to handle geometric information due to the fixed grid kernel structure. The availability of depth data enables progress in RGB-D semantic segmentation with CNNs. State-of-the-art methods either use depth as additional images or process spatial information in 3D volumes or point clouds. These methods suffer from high computation and memory cost. To address these issues, we present Depth-aware CNN by introducing two intuitive, flexible and effective operations: depth-aware convolution and depth-aware average pooling. By leveraging depth similarity between pixels in the process of information propagation, geometry is seamlessly incorporated into CNN. Without introducing any additional parameters, both operators can be easily integrated into existing CNNs. Extensive experiments and ablation studies on challenging RGBD semantic segmentation benchmarks validate the effectiveness and flexibility of our approach.
引用
收藏
页码:144 / 161
页数:18
相关论文
共 50 条
  • [31] Segmentation of Shipping Bags in RGB-D Images
    Vasileva, Elena
    Ivanovski, Zoran
    [J]. 2022 IEEE 5TH INTERNATIONAL CONFERENCE ON IMAGE PROCESSING APPLICATIONS AND SYSTEMS, IPAS, 2022,
  • [32] Efficient Image Segmentation of RGB-D Images
    Fouad, Islam I.
    Rady, Sherine
    Mostafa, G. M. Mostafa
    [J]. 2017 12TH INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING AND SYSTEMS (ICCES), 2017, : 353 - 358
  • [33] Automatic objects segmentation with RGB-D cameras
    Liu, Haowei
    Philipose, Matthai
    Sun, Ming-Ting
    [J]. JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2014, 25 (04) : 709 - 718
  • [34] PolyphonicFormer: Unified Query Learning for Depth-Aware Video Panoptic Segmentation
    Yuan, Haobo
    Li, Xiangtai
    Yang, Yibo
    Cheng, Guangliang
    Zhang, Jing
    Tong, Yunhai
    Zhang, Lefei
    Tao, Dacheng
    [J]. COMPUTER VISION - ECCV 2022, PT XXVII, 2022, 13687 : 582 - 599
  • [35] Depth-Aware Motion Magnification
    Kooij, Julian F. P.
    van Gemert, Jan C.
    [J]. COMPUTER VISION - ECCV 2016, PT VIII, 2016, 9912 : 467 - 482
  • [36] Depth-Aware Shadow Removal
    Fu, Yanping
    Gai, Zhenyu
    Zhao, Haifeng
    Zhang, Shaojie
    Shan, Ying
    Wu, Yang
    Tang, Jin
    [J]. COMPUTER GRAPHICS FORUM, 2022, 41 (07) : 455 - 464
  • [37] Scale-aware network with modality-awareness for RGB-D indoor semantic segmentation
    Zhou, Feng
    Lai, Yu-Kun
    Rosin, Paul L.
    Zhang, Fengquan
    Hu, Yong
    [J]. NEUROCOMPUTING, 2022, 492 : 464 - 473
  • [38] Learning Depth-Sensitive Conditional Random Fields for Semantic Segmentation of RGB-D Images
    Mueller, Andreas C.
    Behnke, Sven
    [J]. 2014 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2014, : 6232 - 6237
  • [39] Depth-Aware Unpaired Video Dehazing
    Yang, Yang
    Guo, Chun-Le
    Guo, Xiaojie
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2024, 33 : 2388 - 2403
  • [40] Depth-Aware Stereo Video Retargeting
    Li, Bing
    Lin, Chia-Wen
    Shi, Boxin
    Huang, Tiejun
    Gao, Wen
    Kuo, C. -C. Jay
    [J]. 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 6517 - 6525