RGB-D Segmentation of Poultry Entrails

被引:4
|
作者
Philipsen, Mark Philip [1 ]
Jorgensen, Anders [1 ,4 ]
Escalera, Sergio [2 ,3 ]
Moeslund, Thomas B. [1 ]
机构
[1] Aalborg Univ, Visual Anal People Lab, Aalborg, Denmark
[2] Univ Barcelona & Comp Vision Ctr, Barcelona 3, Spain
[3] Comp Vis Ctr, Barcelona 3, Spain
[4] IH Food, Copenhagen, Denmark
来源
关键词
QUALITY; COLOR;
D O I
10.1007/978-3-319-41778-3_17
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents an approach for automatic visual inspection of chicken entrails in RGB-D data. The point cloud is first over-segmented into supervoxels based on color, spatial and geometric information. Color, position and texture features are extracted from each of the resulting supervoxels and passed to a Random Forest classifier, which classifies the supervoxels as either belonging to heart, lung, liver or misc. The dataset consists of 150 individual entrails, with 30 of these being reserved for evaluation. Segmentation performance is evaluated on a voxel-by-voxel basis, achieving an average Jaccard index of 61.5% across the four classes of organs. This is a 5.9% increase over the 58.1% achieved with features derived purely from 2D.
引用
收藏
页码:168 / 174
页数:7
相关论文
共 50 条
  • [1] Organ Segmentation in Poultry Viscera Using RGB-D
    Philipsen, Mark Philip
    Dueholm, Jacob Velling
    Jorgensen, Anders
    Escalera, Sergio
    Moeslund, Thomas Baltzer
    [J]. SENSORS, 2018, 18 (01)
  • [2] Unsupervised Segmentation of RGB-D Images
    Deng, Zhuo
    Latecki, Longin Jan
    [J]. COMPUTER VISION - ACCV 2014, PT III, 2015, 9005 : 423 - 435
  • [3] RGB-D SEMANTIC SEGMENTATION: A REVIEW
    Hu, Yaosi
    Chen, Zhenzhong
    Lin, Weiyao
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA & EXPO WORKSHOPS (ICMEW 2018), 2018,
  • [4] Joining geometric and RGB features for RGB-D semantic segmentation
    Zhang, Shaopeng
    Zhong, Min
    Zeng, Gang
    Gan, Rui
    [J]. 2019 INTERNATIONAL CONFERENCE ON IMAGE AND VIDEO PROCESSING, AND ARTIFICIAL INTELLIGENCE, 2019, 11321
  • [5] Segmentation of Shipping Bags in RGB-D Images
    Vasileva, Elena
    Ivanovski, Zoran
    [J]. 2022 IEEE 5TH INTERNATIONAL CONFERENCE ON IMAGE PROCESSING APPLICATIONS AND SYSTEMS, IPAS, 2022,
  • [6] Efficient Image Segmentation of RGB-D Images
    Fouad, Islam I.
    Rady, Sherine
    Mostafa, G. M. Mostafa
    [J]. 2017 12TH INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING AND SYSTEMS (ICCES), 2017, : 353 - 358
  • [7] Automatic objects segmentation with RGB-D cameras
    Liu, Haowei
    Philipose, Matthai
    Sun, Ming-Ting
    [J]. JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2014, 25 (04) : 709 - 718
  • [8] 2.5D CONVOLUTION FOR RGB-D SEMANTIC SEGMENTATION
    Xing, Yajie
    Wang, Jingbo
    Chen, Xiaokang
    Zeng, Gang
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 1410 - 1414
  • [9] RGB×D: Learning depth-weighted RGB patches for RGB-D indoor semantic segmentation
    Cao, Jinming
    Leng, Hanchao
    Cohen-Or, Daniel
    Lischinski, Dani
    Chen, Ying
    Tu, Changhe
    Li, Yangyan
    [J]. Neurocomputing, 2021, 462 : 568 - 580
  • [10] Superpixel Finite Element Segmentation for RGB-D Images
    Kerr, D.
    Coleman, S. A.
    Scotney, B. W.
    [J]. 2017 2ND ASIA-PACIFIC CONFERENCE ON INTELLIGENT ROBOT SYSTEMS (ACIRS), 2017, : 28 - 32