Depth-Aware CNN for RGB-D Segmentation

被引:175
|
作者
Wang, Weiyue [1 ]
Neumann, Ulrich [1 ]
机构
[1] Univ Southern Calif, Los Angeles, CA 90007 USA
来源
关键词
Geometry in CNN; RGB-D semantic segmentation;
D O I
10.1007/978-3-030-01252-6_9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Convolutional neural networks (CNN) are limited by the lack of capability to handle geometric information due to the fixed grid kernel structure. The availability of depth data enables progress in RGB-D semantic segmentation with CNNs. State-of-the-art methods either use depth as additional images or process spatial information in 3D volumes or point clouds. These methods suffer from high computation and memory cost. To address these issues, we present Depth-aware CNN by introducing two intuitive, flexible and effective operations: depth-aware convolution and depth-aware average pooling. By leveraging depth similarity between pixels in the process of information propagation, geometry is seamlessly incorporated into CNN. Without introducing any additional parameters, both operators can be easily integrated into existing CNNs. Extensive experiments and ablation studies on challenging RGBD semantic segmentation benchmarks validate the effectiveness and flexibility of our approach.
引用
收藏
页码:144 / 161
页数:18
相关论文
共 50 条
  • [1] 3D Neighborhood Convolution: Learning Depth-Aware Features for RGB-D and RGB Semantic Segmentation
    Chen, Yunlu
    Mensink, Thomas
    Gavves, Efstratios
    [J]. 2019 INTERNATIONAL CONFERENCE ON 3D VISION (3DV 2019), 2019, : 173 - 182
  • [2] Depth-aware lightweight network for RGB-D salient object detection
    Ling, Liuyi
    Wang, Yiwen
    Wang, Chengjun
    Xu, Shanyong
    Huang, Yourui
    [J]. IET IMAGE PROCESSING, 2023, 17 (08) : 2350 - 2361
  • [3] Depth-aware inverted refinement network for RGB-D salient object detection
    Gao, Lina
    Liu, Bing
    Fu, Ping
    Xu, Mingzhu
    [J]. NEUROCOMPUTING, 2023, 518 : 507 - 522
  • [4] DAST: Depth-Aware Assessment and Synthesis Transformer for RGB-D Salient Object Detection
    Xia, Chenxing
    Duan, Songsong
    Fang, Xianjin
    Ge, Bin
    Gao, Xiuju
    Cui, Jianhua
    [J]. PRICAI 2022: TRENDS IN ARTIFICIAL INTELLIGENCE, PT II, 2022, 13630 : 473 - 487
  • [5] Depth-aware Convolutional Neural Networks for accurate 3D Pose Estimation in RGB-D Images
    Porzi, Lorenzo
    Penate-Sanchez, Adrian
    Ricci, Elisa
    Moreno-Noguer, Francesc
    [J]. 2017 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2017, : 5777 - 5783
  • [6] Depth-Aware Mirror Segmentation
    Mei, Haiyang
    Dong, Bo
    Dong, Wen
    Peers, Pieter
    Yang, Xin
    Zhang, Qiang
    Wei, Xiaopeng
    [J]. 2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 3043 - 3052
  • [7] Depth-Aware Panoptic Segmentation
    Tuan Nguyen
    Mehltretter, Max
    Rottensteiner, Franz
    [J]. ISPRS ANNALS OF THE PHOTOGRAMMETRY, REMOTE SENSING AND SPATIAL INFORMATION SCIENCES: VOLUME X-2-2024, 2024, : 153 - 161
  • [8] DDaNet: Dual-Path Depth-Aware Attention Network for Fingerspelling Recognition Using RGB-D Images
    Yang, Shih-Hung
    Chen, Wei-Ren
    Huang, Wun-Jhu
    Chen, Yon-Ping
    [J]. IEEE ACCESS, 2021, 9 : 7306 - 7322
  • [9] DEPTH REMOVAL DISTILLATION FOR RGB-D SEMANTIC SEGMENTATION
    Fang, Tiyu
    Liang, Zhen
    Shao, Xiuli
    Dong, Zihao
    Li, Jinping
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 2405 - 2409
  • [10] DEPTH-AWARE OBJECT INSTANCE SEGMENTATION
    Ye, Linwei
    Liu, Zhi
    Wang, Yang
    [J]. 2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 325 - 329