DEPTH-AWARE OBJECT INSTANCE SEGMENTATION

被引:0
|
作者
Ye, Linwei [1 ]
Liu, Zhi [2 ]
Wang, Yang [1 ]
机构
[1] Univ Manitoba, Dept Comp Sci, Winnipeg, MB, Canada
[2] Shanghai Univ, Sch Commun & Informat Engn, Shanghai, Peoples R China
基金
加拿大自然科学与工程研究理事会; 中国国家自然科学基金;
关键词
instance segmentation; depth; occlusion reasoning;
D O I
暂无
中图分类号
TB8 [摄影技术];
学科分类号
0804 ;
摘要
We consider the problem of object instance segmentation. The goal is to label each pixel in an image according to its object class as well as its object instance. The proposed approach consists of three steps including object instance detection, category-specific instance segmentation and depth-aware ordering. The novelty of the proposed approach is that it uses the depth information to resolve the ambiguity of pixel labels when two object instances are overlapping. Experimental results on the PASCAL VOC 2012 benchmark demonstrate the competitive performance of the proposed approach compared with other state-of-the-art methods.
引用
收藏
页码:325 / 329
页数:5
相关论文
共 50 条
  • [1] Salient object segmentation based on depth-aware image layering
    Du, Huan
    Liu, Zhi
    Shi, Ran
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2019, 78 (09) : 12125 - 12138
  • [2] Salient object segmentation based on depth-aware image layering
    Huan Du
    Zhi Liu
    Ran Shi
    [J]. Multimedia Tools and Applications, 2019, 78 : 12125 - 12138
  • [3] Depth-Aware Mirror Segmentation
    Mei, Haiyang
    Dong, Bo
    Dong, Wen
    Peers, Pieter
    Yang, Xin
    Zhang, Qiang
    Wei, Xiaopeng
    [J]. 2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 3043 - 3052
  • [4] Depth-Aware Panoptic Segmentation
    Tuan Nguyen
    Mehltretter, Max
    Rottensteiner, Franz
    [J]. ISPRS ANNALS OF THE PHOTOGRAMMETRY, REMOTE SENSING AND SPATIAL INFORMATION SCIENCES: VOLUME X-2-2024, 2024, : 153 - 161
  • [5] DEPTH-AWARE LAYERED EDGE FOR OBJECT PROPOSAL
    Liu, Jing
    Ren, Tongwei
    Bao, Bing-Kun
    Bei, Jia
    [J]. 2016 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA & EXPO (ICME), 2016,
  • [6] Depth-Aware Object Tracking With a Conditional Variational Autoencoder
    Huang, Wenhui
    Gu, Jason
    Guo, Yinchen
    [J]. IEEE ACCESS, 2021, 9 : 94537 - 94547
  • [7] SEMANTIC CONTEXT AND DEPTH-AWARE OBJECT PROPOSAL GENERATION
    Zhang, Haoyang
    He, Xuming
    Porikli, Fatih
    Kneip, Laurent
    [J]. 2016 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2016, : 1 - 5
  • [8] PanopticDepth: A Unified Framework for Depth-aware Panoptic Segmentation
    Gao, Naiyu
    He, Fei
    Jia, Jian
    Shan, Yanhu
    Zhang, Haoyang
    Zhao, Xin
    Huang, Kaiqi
    [J]. 2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 1622 - 1632
  • [9] DADA: Depth-Aware Domain Adaptation in Semantic Segmentation
    Vu, Tuan-Hung
    Jain, Himalaya
    Bucher, Maxime
    Cord, Matthieu
    Perez, Patrick
    [J]. 2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 7363 - 7372
  • [10] Depth-Aware CNN for RGB-D Segmentation
    Wang, Weiyue
    Neumann, Ulrich
    [J]. COMPUTER VISION - ECCV 2018, PT XI, 2018, 11215 : 144 - 161