DEPTH-AWARE OBJECT INSTANCE SEGMENTATION

被引:0
|
作者
Ye, Linwei [1 ]
Liu, Zhi [2 ]
Wang, Yang [1 ]
机构
[1] Univ Manitoba, Dept Comp Sci, Winnipeg, MB, Canada
[2] Shanghai Univ, Sch Commun & Informat Engn, Shanghai, Peoples R China
基金
加拿大自然科学与工程研究理事会; 中国国家自然科学基金;
关键词
instance segmentation; depth; occlusion reasoning;
D O I
暂无
中图分类号
TB8 [摄影技术];
学科分类号
0804 ;
摘要
We consider the problem of object instance segmentation. The goal is to label each pixel in an image according to its object class as well as its object instance. The proposed approach consists of three steps including object instance detection, category-specific instance segmentation and depth-aware ordering. The novelty of the proposed approach is that it uses the depth information to resolve the ambiguity of pixel labels when two object instances are overlapping. Experimental results on the PASCAL VOC 2012 benchmark demonstrate the competitive performance of the proposed approach compared with other state-of-the-art methods.
引用
下载
收藏
页码:325 / 329
页数:5
相关论文
共 50 条
  • [31] MonoDVPS: A Self-Supervised Monocular Depth Estimation Approach to Depth-aware Video Panoptic Segmentation
    Petrovai, Andra
    Nedevschi, Sergiu
    2023 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2023, : 3076 - 3085
  • [32] Depth-aware image vectorization and editing
    Lu, Shufang
    Jiang, Wei
    Ding, Xuefeng
    Kaplan, Craig S.
    Jin, Xiaogang
    Gao, Fei
    Chen, Jiazhou
    VISUAL COMPUTER, 2019, 35 (6-8): : 1027 - 1039
  • [33] Depth-aware salient object detection using anisotropic center-surround difference
    Ju, Ran
    Liu, Yang
    Ren, Tongwei
    Ge, Ling
    Wu, Gangshan
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2015, 38 : 115 - 126
  • [34] ViP-DeepLab: Learning Visual Perception with Depth-aware Video Panoptic Segmentation
    Qiao, Siyuan
    Zhu, Yukun
    Adam, Hartwig
    Yuille, Alan
    Chen, Liang-Chieh
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 3996 - 4007
  • [35] Depth-aware inverted refinement network for RGB-D salient object detection
    Gao, Lina
    Liu, Bing
    Fu, Ping
    Xu, Mingzhu
    NEUROCOMPUTING, 2023, 518 : 507 - 522
  • [36] InsMOS: Instance-Aware Moving Object Segmentation in LiDAR Data
    Wang, Neng
    Shi, Chenghao
    Guo, Ruibin
    Lu, Huimin
    Zheng, Zhiqiang
    Chen, Xieyuanli
    2023 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2023, : 7598 - 7605
  • [37] Depth-Aware Display Using Synthetic Refocusing
    Suh, Sungjoo
    Yi, Kwonju
    Choi, Changkyu
    Park, Du Sik
    Kim, Chang Yeong
    IDW'11: PROCEEDINGS OF THE 18TH INTERNATIONAL DISPLAY WORKSHOPS, VOLS 1-3, 2011, : 429 - 432
  • [38] Adaptive depth-aware visual relationship detection
    Gan, Ming-Gang
    He, Yuxuan
    KNOWLEDGE-BASED SYSTEMS, 2022, 247
  • [39] ZoomShop: Depth-Aware Editing of Photographic Composition
    Liu, Sean J.
    Agrawala, Maneesh
    DiVerdi, Stephen
    Hertzmann, Aaron
    COMPUTER GRAPHICS FORUM, 2022, 41 (02) : 57 - 70
  • [40] DAnet: DEPTH-AWARE NETWORK FOR CROWD COUNTING
    Van-Su Huynh
    Hoang Tran
    Huang, Ching-Chun
    2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 3001 - 3005