ViP-DeepLab: Learning Visual Perception with Depth-aware Video Panoptic Segmentation

被引:56
|
作者
Qiao, Siyuan [1 ]
Zhu, Yukun [2 ]
Adam, Hartwig [2 ]
Yuille, Alan [1 ]
Chen, Liang-Chieh [2 ]
机构
[1] Johns Hopkins Univ, Baltimore, MD 21218 USA
[2] Google Res, Mountain View, CA USA
关键词
D O I
10.1109/CVPR46437.2021.00399
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we present ViP-DeepLab, a unified model attempting to tackle the long-standing and challenging inverse projection problem in vision, which we model as restoring the point clouds from perspective image sequences while providing each point with instance-level semantic interpretations. Solving this problem requires the vision models to predict the spatial location, semantic class, and temporally consistent instance label for each 3D point. ViP-DeepLab approaches it by jointly performing monocular depth estimation and video panoptic segmentation. We name this joint task as Depth-aware Video Panoptic Segmentation, and propose a new evaluation metric along with two derived datasets for it, which will be made available to the public. On the individual sub-tasks, ViP-DeepLab also achieves state-of-the-art results, outperforming previous methods by 5.1% VPQ on Cityscapes-VPS, ranking 1st on the KITTI monocular depth estimation benchmark, and 1st on KITTI MOTS pedestrian. The datasets and the evaluation codes are made publicly available(1).
引用
收藏
页码:3996 / 4007
页数:12
相关论文
共 50 条
  • [1] PolyphonicFormer: Unified Query Learning for Depth-Aware Video Panoptic Segmentation
    Yuan, Haobo
    Li, Xiangtai
    Yang, Yibo
    Cheng, Guangliang
    Zhang, Jing
    Tong, Yunhai
    Zhang, Lefei
    Tao, Dacheng
    [J]. COMPUTER VISION - ECCV 2022, PT XXVII, 2022, 13687 : 582 - 599
  • [2] Depth-Aware Panoptic Segmentation
    Tuan Nguyen
    Mehltretter, Max
    Rottensteiner, Franz
    [J]. ISPRS ANNALS OF THE PHOTOGRAMMETRY, REMOTE SENSING AND SPATIAL INFORMATION SCIENCES: VOLUME X-2-2024, 2024, : 153 - 161
  • [3] Uni-DVPS: Unified Model for Depth-Aware Video Panoptic Segmentation
    Ji-Yeon, Kim
    Hyun-Bin, Oh
    Byung-Ki, Kwon
    Kim, Dahun
    Kwon, Yongjin
    Oh, Tae-Hyun
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2024, 9 (07): : 6186 - 6193
  • [4] PanopticDepth: A Unified Framework for Depth-aware Panoptic Segmentation
    Gao, Naiyu
    He, Fei
    Jia, Jian
    Shan, Yanhu
    Zhang, Haoyang
    Zhao, Xin
    Huang, Kaiqi
    [J]. 2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 1622 - 1632
  • [5] MonoDVPS: A Self-Supervised Monocular Depth Estimation Approach to Depth-aware Video Panoptic Segmentation
    Petrovai, Andra
    Nedevschi, Sergiu
    [J]. 2023 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2023, : 3076 - 3085
  • [6] Towards Deeply Unified Depth-aware Panoptic Segmentation with Bi-directional Guidance Learning
    He, Junwen
    Wang, Yifan
    Wang, Lijun
    Lu, Huchuan
    Luo, Bin
    He, Jun-Yan
    Lan, Jin-Peng
    Geng, Yifeng
    Xie, Xuansong
    [J]. 2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION, ICCV, 2023, : 4088 - 4098
  • [7] Depth-Aware Mirror Segmentation
    Mei, Haiyang
    Dong, Bo
    Dong, Wen
    Peers, Pieter
    Yang, Xin
    Zhang, Qiang
    Wei, Xiaopeng
    [J]. 2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 3043 - 3052
  • [8] Learning Depth-Aware Deep Representations for Robotic Perception
    Porzi, Lorenzo
    Bulo, Samuel Rota
    Penate-Sanchez, Adrian
    Ricci, Elisa
    Moreno-Noguer, Francesc
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2017, 2 (02): : 468 - 475
  • [9] Depth-Aware Unpaired Video Dehazing
    Yang, Yang
    Guo, Chun-Le
    Guo, Xiaojie
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2024, 33 : 2388 - 2403
  • [10] Depth-Aware Stereo Video Retargeting
    Li, Bing
    Lin, Chia-Wen
    Shi, Boxin
    Huang, Tiejun
    Gao, Wen
    Kuo, C. -C. Jay
    [J]. 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 6517 - 6525