PanopticDepth: A Unified Framework for Depth-aware Panoptic Segmentation

被引:5
|
作者
Gao, Naiyu [1 ,2 ]
He, Fei [1 ,2 ]
Jia, Jian [1 ,2 ]
Shan, Yanhu [4 ]
Zhang, Haoyang [4 ]
Zhao, Xin [1 ,2 ]
Huang, Kaiqi [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Inst Automat, CRISE, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing, Peoples R China
[3] CAS Ctr Excellence Brain Sci & Intelligence Techn, Shanghai, Peoples R China
[4] Horizon Robot Inc, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1109/CVPR52688.2022.00168
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a unified framework for depth-aware panoptic segmentation (DPS), which aims to reconstruct 3D scene with instance-level semantics from one single image. Prior works address this problem by simply adding a dense depth regression head to panoptic segmentation (PS) networks, resulting in two independent task branches. This neglects the mutually-beneficial relations between these two tasks, thus failing to exploit handy instance-level semantic cues to boost depth accuracy while also producing suboptimal depth maps. To overcome these limitations, we propose a unified framework for the DPS task by applying a dynamic convolution technique to both the PS and depth prediction tasks. Specifically, instead of predicting depth for all pixels at a time, we generate instance-specific kernels to predict depth and segmentation masks for each instance. Moreover, leveraging the instance-wise depth estimation scheme, we add additional instance-level depth cues to assist with supervising the depth learning via a new depth loss. Extensive experiments on Cityscapes-DPS and SemKITTI-DPS show the effectiveness and promise of our method. We hope our unified solution to DPS can lead a new paradigm in this area. Code is available at https://github.com/NaiyuGao/PanopticDepth.
引用
收藏
页码:1622 / 1632
页数:11
相关论文
共 50 条
  • [1] Depth-Aware Panoptic Segmentation
    Tuan Nguyen
    Mehltretter, Max
    Rottensteiner, Franz
    [J]. ISPRS ANNALS OF THE PHOTOGRAMMETRY, REMOTE SENSING AND SPATIAL INFORMATION SCIENCES: VOLUME X-2-2024, 2024, : 153 - 161
  • [2] PolyphonicFormer: Unified Query Learning for Depth-Aware Video Panoptic Segmentation
    Yuan, Haobo
    Li, Xiangtai
    Yang, Yibo
    Cheng, Guangliang
    Zhang, Jing
    Tong, Yunhai
    Zhang, Lefei
    Tao, Dacheng
    [J]. COMPUTER VISION - ECCV 2022, PT XXVII, 2022, 13687 : 582 - 599
  • [3] Uni-DVPS: Unified Model for Depth-Aware Video Panoptic Segmentation
    Ji-Yeon, Kim
    Hyun-Bin, Oh
    Byung-Ki, Kwon
    Kim, Dahun
    Kwon, Yongjin
    Oh, Tae-Hyun
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2024, 9 (07): : 6186 - 6193
  • [4] Towards Deeply Unified Depth-aware Panoptic Segmentation with Bi-directional Guidance Learning
    He, Junwen
    Wang, Yifan
    Wang, Lijun
    Lu, Huchuan
    Luo, Bin
    He, Jun-Yan
    Lan, Jin-Peng
    Geng, Yifeng
    Xie, Xuansong
    [J]. 2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION, ICCV, 2023, : 4088 - 4098
  • [5] ViP-DeepLab: Learning Visual Perception with Depth-aware Video Panoptic Segmentation
    Qiao, Siyuan
    Zhu, Yukun
    Adam, Hartwig
    Yuille, Alan
    Chen, Liang-Chieh
    [J]. 2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 3996 - 4007
  • [6] Depth-Aware Mirror Segmentation
    Mei, Haiyang
    Dong, Bo
    Dong, Wen
    Peers, Pieter
    Yang, Xin
    Zhang, Qiang
    Wei, Xiaopeng
    [J]. 2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 3043 - 3052
  • [7] MonoDVPS: A Self-Supervised Monocular Depth Estimation Approach to Depth-aware Video Panoptic Segmentation
    Petrovai, Andra
    Nedevschi, Sergiu
    [J]. 2023 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2023, : 3076 - 3085
  • [8] DEPTH-AWARE OBJECT INSTANCE SEGMENTATION
    Ye, Linwei
    Liu, Zhi
    Wang, Yang
    [J]. 2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 325 - 329
  • [9] DADA: Depth-Aware Domain Adaptation in Semantic Segmentation
    Vu, Tuan-Hung
    Jain, Himalaya
    Bucher, Maxime
    Cord, Matthieu
    Perez, Patrick
    [J]. 2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 7363 - 7372
  • [10] Depth-Aware CNN for RGB-D Segmentation
    Wang, Weiyue
    Neumann, Ulrich
    [J]. COMPUTER VISION - ECCV 2018, PT XI, 2018, 11215 : 144 - 161