PanopticDepth: A Unified Framework for Depth-aware Panoptic Segmentation

被引:5
|
作者
Gao, Naiyu [1 ,2 ]
He, Fei [1 ,2 ]
Jia, Jian [1 ,2 ]
Shan, Yanhu [4 ]
Zhang, Haoyang [4 ]
Zhao, Xin [1 ,2 ]
Huang, Kaiqi [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Inst Automat, CRISE, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing, Peoples R China
[3] CAS Ctr Excellence Brain Sci & Intelligence Techn, Shanghai, Peoples R China
[4] Horizon Robot Inc, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1109/CVPR52688.2022.00168
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a unified framework for depth-aware panoptic segmentation (DPS), which aims to reconstruct 3D scene with instance-level semantics from one single image. Prior works address this problem by simply adding a dense depth regression head to panoptic segmentation (PS) networks, resulting in two independent task branches. This neglects the mutually-beneficial relations between these two tasks, thus failing to exploit handy instance-level semantic cues to boost depth accuracy while also producing suboptimal depth maps. To overcome these limitations, we propose a unified framework for the DPS task by applying a dynamic convolution technique to both the PS and depth prediction tasks. Specifically, instead of predicting depth for all pixels at a time, we generate instance-specific kernels to predict depth and segmentation masks for each instance. Moreover, leveraging the instance-wise depth estimation scheme, we add additional instance-level depth cues to assist with supervising the depth learning via a new depth loss. Extensive experiments on Cityscapes-DPS and SemKITTI-DPS show the effectiveness and promise of our method. We hope our unified solution to DPS can lead a new paradigm in this area. Code is available at https://github.com/NaiyuGao/PanopticDepth.
引用
收藏
页码:1622 / 1632
页数:11
相关论文
共 50 条
  • [31] Unified Network With Detail Guidance for Panoptic Segmentation
    Sun, Qingwei
    Chao, Jiangang
    Lin, Wanhong
    Xu, Zhenying
    Chen, Wei
    [J]. IEEE ACCESS, 2023, 11 : 91937 - 91948
  • [32] PUPS: Point Cloud Unified Panoptic Segmentation
    Su, Shihao
    Xu, Jianyun
    Wang, Huanyu
    Miao, Zhenwei
    Zhan, Xin
    Hao, Dayang
    Li, Xi
    [J]. THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 2, 2023, : 2339 - 2347
  • [33] Adaptive depth-aware visual relationship detection
    Gan, Ming-Gang
    He, Yuxuan
    [J]. KNOWLEDGE-BASED SYSTEMS, 2022, 247
  • [34] Depth-Aware Display Using Synthetic Refocusing
    Suh, Sungjoo
    Yi, Kwonju
    Choi, Changkyu
    Park, Du Sik
    Kim, Chang Yeong
    [J]. IDW'11: PROCEEDINGS OF THE 18TH INTERNATIONAL DISPLAY WORKSHOPS, VOLS 1-3, 2011, : 429 - 432
  • [35] Depth-Aware Neural Style Transfer for Videos
    Ioannou, Eleftherios
    Maddock, Steve
    [J]. COMPUTERS, 2023, 12 (04)
  • [36] ZoomShop: Depth-Aware Editing of Photographic Composition
    Liu, Sean J.
    Agrawala, Maneesh
    DiVerdi, Stephen
    Hertzmann, Aaron
    [J]. COMPUTER GRAPHICS FORUM, 2022, 41 (02) : 57 - 70
  • [37] DAnet: DEPTH-AWARE NETWORK FOR CROWD COUNTING
    Van-Su Huynh
    Hoang Tran
    Huang, Ching-Chun
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 3001 - 3005
  • [38] Depth-Aware Object Tracking With a Conditional Variational Autoencoder
    Huang, Wenhui
    Gu, Jason
    Guo, Yinchen
    [J]. IEEE ACCESS, 2021, 9 : 94537 - 94547
  • [39] Uncertainty-aware LiDAR Panoptic Segmentation
    Sirohi, Kshitij
    Marvi, Sajad
    Buscher, Daniel
    Burgard, Wolfram
    [J]. 2023 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2023), 2023, : 8277 - 8283
  • [40] Contour-Aware Panoptic Segmentation Network
    Xu, Yue
    Zhu, Dongchen
    Zhang, Guanghui
    Shi, Wenjun
    Li, Jiamao
    Zhang, Xiaolin
    [J]. PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2021, PT II, 2021, 13020 : 79 - 90