Rotation invariant roughness features for texture classification

被引:0
|
作者
Charalampidis, D [1 ]
Kasparis, T [1 ]
机构
[1] Univ New Orleans, Dept Elect Engn, New Orleans, LA 70148 USA
关键词
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
In this paper, we introduce a rotational invariant feature set for texture classification, based on an extension of fractal dimension (FD) features. The FD extracts roughness information from images considering all available scales at once, In this work, a single scale is considered at a time so that textures with scale-dependent properties are satisfactorily characterized. Single scale features are combined with multiple scale features for a more complete textural representation. Directional wavelets are employed for the computation of roughness features, because of their ability to extract information at different resolutions and directions. The final feature vector is rotational invariant and retains the texture directional information. The roughness feature set results in higher classification rate than other feature vectors presented in this work, while preserving the important properties of FD, namely insensitivity to absolute illumination and contrast.
引用
收藏
页码:3672 / 3675
页数:4
相关论文
共 50 条
  • [31] Model based rotation-invariant texture classification
    Campisi, P
    Neri, A
    Scarano, G
    [J]. 2002 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL III, PROCEEDINGS, 2002, : 117 - 120
  • [32] Rotation Invariant Local Frequency Descriptors for Texture Classification
    Maani, Rouzbeh
    Kalra, Sanjay
    Yang, Yee-Hong
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2013, 22 (06) : 2409 - 2419
  • [33] Learning rotation invariant convolutional filters for texture classification
    Marcos, Diego
    Volpi, Michele
    Tuia, Devis
    [J]. 2016 23RD INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2016, : 2012 - 2017
  • [34] Empirical Mode Decomposition for Rotation Invariant Texture Classification
    Xiong Changzhen
    Guo Fenhong
    [J]. 2009 IEEE PACIFIC RIM CONFERENCE ON COMMUNICATIONS, COMPUTERS AND SIGNAL PROCESSING, VOLS 1 AND 2, 2009, : 551 - 554
  • [35] Rotation invariant texture classification of remote sense image
    Lin, Z
    Du, HY
    Liu, YC
    [J]. JOURNAL OF INFRARED AND MILLIMETER WAVES, 2004, 23 (03) : 189 - 192
  • [36] Rotation invariant texture classification using multichannel filtering
    Manthalkar, R
    Biswas, PK
    [J]. OBJECT DETECTION, CLASSIFICATION, AND TRACKING TECHNOLOGIES, 2001, 4554 : 107 - +
  • [37] Rotation invariant texture classification based on Gabor wavelets
    Xie, Xudong
    Lu, Jianhua
    Gong, Jie
    Zhang, Ning
    [J]. MIPPR 2007: PATTERN RECOGNITION AND COMPUTER VISION, 2007, 6788
  • [38] Rotation invariant texture classification using Gabor wavelets
    Yin, Qingbo
    Kim, Jong Nam
    Moon, Kwang-Seok
    [J]. COMPUTATIONAL SCIENCE - ICCS 2007, PT 3, PROCEEDINGS, 2007, 4489 : 10 - +
  • [39] Efficient Rotation Invariant Gabor Descriptors for Texture Classification
    Rahman, M. Hafizur
    Pickering, Mark
    Kundu, Diponkar
    [J]. 2012 INTERNATIONAL CONFERENCE ON INFORMATICS, ELECTRONICS & VISION (ICIEV), 2012, : 661 - 666
  • [40] Reflection and Rotation Invariant Uniform Patterns for Texture Classification
    Liang, Chao
    Yang, Wenming
    Zhou, Fei
    Liao, Qingmin
    [J]. IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2016, E99D (05): : 1400 - 1403