Learning rotation invariant convolutional filters for texture classification

被引:0
|
作者
Marcos, Diego [1 ]
Volpi, Michele [1 ]
Tuia, Devis [1 ]
机构
[1] Univ Zurich, Dept Geog, MultiModal Remote Sensing, Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
LOCAL BINARY PATTERNS; GRAY-SCALE; RECOGNITION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a method for learning discriminative filters using a shallow Convolutional Neural Network (CNN). We encode rotation invariance directly in the model by tying the weights of groups of filters to several rotated versions of the canonical filter in the group. These filters can be used to extract rotation invariant features well-suited for image classification. We test this learning procedure on a texture classification benchmark, where the orientations of the training images differ from those of the test images. We obtain results comparable to the state-of-the-art. Compared to standard shallow CNNs, the proposed method obtains higher classification performance while reducing by an order of magnitude the number of parameters to be learned.
引用
收藏
页码:2012 / 2017
页数:6
相关论文
共 50 条
  • [1] Gabor filters for rotation invariant texture classification
    Porter, R
    Canagarajah, N
    [J]. ISCAS '97 - PROCEEDINGS OF 1997 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS I - IV: CIRCUITS AND SYSTEMS IN THE INFORMATION AGE, 1997, : 1193 - 1196
  • [2] Rotation invariant texture classification using even symmetric Gabor filters
    Manthalkar, R
    Biswas, PK
    Chatterji, BN
    [J]. PATTERN RECOGNITION LETTERS, 2003, 24 (12) : 2061 - 2068
  • [3] Multiscale Rotation-Invariant Convolutional Neural Networks for Lung Texture Classification
    Wang, Qiangchang
    Zheng, Yuanjie
    Yang, Gongping
    Jin, Weidong
    Chen, Xinjian
    Yin, Yilong
    [J]. IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2018, 22 (01) : 184 - 195
  • [4] Robust rotation invariant texture classification
    Porter, R
    Canagarajah, N
    [J]. 1997 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I - V: VOL I: PLENARY, EXPERT SUMMARIES, SPECIAL, AUDIO, UNDERWATER ACOUSTICS, VLSI; VOL II: SPEECH PROCESSING; VOL III: SPEECH PROCESSING, DIGITAL SIGNAL PROCESSING; VOL IV: MULTIDIMENSIONAL SIGNAL PROCESSING, NEURAL NETWORKS - VOL V: STATISTICAL SIGNAL AND ARRAY PROCESSING, APPLICATIONS, 1997, : 3157 - 3160
  • [5] Rotation-invariant texture classification
    Lahajnar, F
    Kovacic, S
    [J]. PATTERN RECOGNITION LETTERS, 2003, 24 (9-10) : 1151 - 1161
  • [6] Compact rotation-invariant texture classification
    Southam, P
    Harvey, R
    [J]. ICIP: 2004 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1- 5, 2004, : 3033 - 3036
  • [7] Rotation invariant roughness features for texture classification
    Charalampidis, D
    Kasparis, T
    [J]. 2002 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I-IV, PROCEEDINGS, 2002, : 3672 - 3675
  • [8] A survey of rotation invariant texture classification methods
    Manthalkar, R
    Biswas, PK
    [J]. IETE JOURNAL OF RESEARCH, 2002, 48 (3-4) : 189 - 198
  • [9] Scale and Rotation Invariant Gabor Texture Descriptor for Texture Classification
    Li, Zhi
    Liu, Guizhong
    Qian, Xueming
    Wang, Chen
    [J]. VISUAL COMMUNICATIONS AND IMAGE PROCESSING 2010, 2010, 7744
  • [10] Rotation Invariant Texture Classification Using Ellipse Invariant Algorithm
    Yao, Chih-Chia
    Lee, Kang
    [J]. PROCEEDINGS OF 2009 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-6, 2009, : 2956 - 2961