Learning rotation invariant convolutional filters for texture classification

被引:0
|
作者
Marcos, Diego [1 ]
Volpi, Michele [1 ]
Tuia, Devis [1 ]
机构
[1] Univ Zurich, Dept Geog, MultiModal Remote Sensing, Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
LOCAL BINARY PATTERNS; GRAY-SCALE; RECOGNITION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a method for learning discriminative filters using a shallow Convolutional Neural Network (CNN). We encode rotation invariance directly in the model by tying the weights of groups of filters to several rotated versions of the canonical filter in the group. These filters can be used to extract rotation invariant features well-suited for image classification. We test this learning procedure on a texture classification benchmark, where the orientations of the training images differ from those of the test images. We obtain results comparable to the state-of-the-art. Compared to standard shallow CNNs, the proposed method obtains higher classification performance while reducing by an order of magnitude the number of parameters to be learned.
引用
收藏
页码:2012 / 2017
页数:6
相关论文
共 50 条
  • [41] Rotation invariant texture classification using Gabor phase features
    Manthalkar, R
    Biswas, PK
    [J]. IETE JOURNAL OF RESEARCH, 2002, 48 (3-4) : 199 - 204
  • [42] A MODEL-BASED METHOD FOR ROTATION INVARIANT TEXTURE CLASSIFICATION
    KASHYAP, RL
    KHOTANZAD, A
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1986, 8 (04) : 472 - 481
  • [43] Noise robust and rotation invariant framework for texture analysis and classification
    Legaz-Aparicio, Alvar-Gines
    Verdu-Monedero, Rafael
    Engan, Kjersti
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2018, 335 : 124 - 132
  • [44] COMPLETED LOCAL DERIVATIVE PATTERN FOR ROTATION INVARIANT TEXTURE CLASSIFICATION
    Hu, Yuting
    Long, Zhiling
    AlRegib, Ghassan
    [J]. 2016 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2016, : 3548 - 3552
  • [45] Local directional derivative pattern for rotation invariant texture classification
    Zhenhua Guo
    Qin Li
    Jane You
    David Zhang
    Wenhuang Liu
    [J]. Neural Computing and Applications, 2012, 21 : 1893 - 1904
  • [46] Noise robust and rotation invariant entropy features for texture classification
    Shakoor, Mohammad Hossein
    Tajeripour, Farshad
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2017, 76 (06) : 8031 - 8066
  • [47] Rotation-invariant texture classification using feature distributions
    Pietikäinen, M
    Ojala, T
    Xu, Z
    [J]. PATTERN RECOGNITION, 2000, 33 (01) : 43 - 52
  • [48] Rotation Invariant Texture Classification Using Principal Direction Estimation
    Qiao, Yulong
    Zhao, Ying
    [J]. GENETIC AND EVOLUTIONARY COMPUTING, 2015, 329 : 247 - 256
  • [49] ROTATION INVARIANT TEXTURE FEATURE ALGORITHMS FOR URBAN SETTLEMENT CLASSIFICATION
    Khumalo, P. P.
    Tapamo, J. R.
    van den Bergh, F.
    [J]. 2011 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2011, : 511 - 514
  • [50] Noise robust and rotation invariant entropy features for texture classification
    Mohammad Hossein Shakoor
    Farshad Tajeripour
    [J]. Multimedia Tools and Applications, 2017, 76 : 8031 - 8066