Rotation-invariant texture classification using feature distributions

被引:339
|
作者
Pietikäinen, M [1 ]
Ojala, T [1 ]
Xu, Z [1 ]
机构
[1] Oulu Univ, Infotech Oulu, Dept Elect Engn, Machine Vis & Media Proc Grp, FIN-90401 Oulu, Finland
基金
芬兰科学院;
关键词
texture analysis; classification; feature distribution; rotation invariant; performance evaluation;
D O I
10.1016/S0031-3203(99)00032-1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A distribution-based classification approach and a set of recently developed texture measures are applied to rotation-invariant texture classification. The performance is compared to that obtained with the well-known circular-symmetric autoregressive random field (CSAR) model approach. A difficult classification problem of 15 different Brodatz textures and seven rotation angles is used in experiments. The results show much better performance for our approach than for the CSAR features. A detailed analysis of the confusion matrices and the rotation angles of misclassified samples produces several interesting observations about the classification problem and the features used in this study. (C) 1999 Published by Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:43 / 52
页数:10
相关论文
共 50 条
  • [1] Rotation-invariant texture classification using feature distributions
    Pietikainen, M
    Xu, Z
    Ojala, T
    SCIA '97 - PROCEEDINGS OF THE 10TH SCANDINAVIAN CONFERENCE ON IMAGE ANALYSIS, VOLS 1 AND 2, 1997, : 103 - 110
  • [2] Rotation-invariant texture classification
    Lahajnar, F
    Kovacic, S
    PATTERN RECOGNITION LETTERS, 2003, 24 (9-10) : 1151 - 1161
  • [3] Classification of texture rotation invariant in images using feature distributions
    Ramesh, B. E.
    Shadaksharappa, B.
    Gangashetty, Suryakanth V.
    ICCIMA 2007: INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND MULTIMEDIA APPLICATIONS, VOL II, PROCEEDINGS, 2007, : 238 - +
  • [4] Compact rotation-invariant texture classification
    Southam, P
    Harvey, R
    ICIP: 2004 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1- 5, 2004, : 3033 - 3036
  • [5] Rotation-invariant texture feature for image retrieval
    Pun, CM
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2003, 89 (01) : 24 - 43
  • [6] Rotation-invariant texture classification using circular Gabor wavelets
    Yin, Qingbo
    Kim, Jong-Nam
    Shen, Liran
    OPTICAL ENGINEERING, 2009, 48 (01)
  • [7] Rotation-invariant features for texture image classification
    Jalil, A.
    Qureshi, I. M.
    Manzar, A.
    Zahoor, R. A.
    2006 IEEE INTERNATIONAL CONFERENCE ON ENGINEERING OF INTELLIGENT SYSTEMS, 2006, : 42 - +
  • [8] Model based rotation-invariant texture classification
    Campisi, P
    Neri, A
    Scarano, G
    2002 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL III, PROCEEDINGS, 2002, : 117 - 120
  • [9] A comparative study of rotation-invariant texture classification using SVM
    Ben Salem, Yassine
    Nasri, Salem
    2009 3RD INTERNATIONAL CONFERENCE ON SIGNALS, CIRCUITS AND SYSTEMS (SCS 2009), 2009, : 263 - 268
  • [10] Multiresolution rotation-invariant texture classification using feature extraction in the frequency domain and vector quantization
    Di Lillo, Antonella
    Motta, Giovanni
    Storer, James A.
    DCC: 2008 DATA COMPRESSION CONFERENCE, PROCEEDINGS, 2008, : 452 - +