Model based rotation-invariant texture classification

被引:0
|
作者
Campisi, P [1 ]
Neri, A [1 ]
Scarano, G [1 ]
机构
[1] Univ Studi Roma Roma Tre, Dipartimento Ingn Elettron, I-00146 Rome, Italy
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper a model based texture classification procedure robust to sample rotation is presented. The texture is modeled as the output of a linear system driven by a binary image. This latter retains the morphological characteristics of the texture and it is specified by its spatial autocorrelation function (ACF). We show that features extracted from the ACF of the binary excitation suffice to represent the texture for classification purposes. Specifically, we employ a classical moment invariants based technique to classify the ACF and the resulting classification procedure is thus inherently rotation invariant. Experimental results show that this approach allows obtaining high correct rotation-invariant classification rates while reducing the size of the feature space and the computational burden.
引用
收藏
页码:117 / 120
页数:4
相关论文
共 50 条
  • [1] Rotation-invariant texture classification
    Lahajnar, F
    Kovacic, S
    [J]. PATTERN RECOGNITION LETTERS, 2003, 24 (9-10) : 1151 - 1161
  • [2] Compact rotation-invariant texture classification
    Southam, P
    Harvey, R
    [J]. ICIP: 2004 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1- 5, 2004, : 3033 - 3036
  • [3] Robust rotation-invariant texture classification using a model based approach
    Campisi, P
    Neri, A
    Panci, G
    Scarano, G
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2004, 13 (06) : 782 - 791
  • [4] Rotation-invariant features based on directional coding for texture classification
    Farida Ouslimani
    Achour Ouslimani
    Zohra Ameur
    [J]. Neural Computing and Applications, 2019, 31 : 6393 - 6400
  • [5] Rotation-invariant features for texture image classification
    Jalil, A.
    Qureshi, I. M.
    Manzar, A.
    Zahoor, R. A.
    [J]. 2006 IEEE INTERNATIONAL CONFERENCE ON ENGINEERING OF INTELLIGENT SYSTEMS, 2006, : 42 - +
  • [6] Rotation-invariant features based on directional coding for texture classification
    Ouslimani, Farida
    Ouslimani, Achour
    Ameur, Zohra
    [J]. NEURAL COMPUTING & APPLICATIONS, 2019, 31 (10): : 6393 - 6400
  • [7] Texture image classification based on rotation-invariant U transforms
    [J]. 2016, Institute of Computing Technology (28):
  • [8] Rotation-invariant texture classification using feature distributions
    Pietikäinen, M
    Ojala, T
    Xu, Z
    [J]. PATTERN RECOGNITION, 2000, 33 (01) : 43 - 52
  • [9] Rotation-invariant Local Binary Pattern Texture Classification
    Doshi, Niraj P.
    Schaefer, Gerald
    [J]. PROCEEDINGS ELMAR-2012, 2012, : 71 - 74
  • [10] Rotation-invariant texture classification using feature distributions
    Pietikainen, M
    Xu, Z
    Ojala, T
    [J]. SCIA '97 - PROCEEDINGS OF THE 10TH SCANDINAVIAN CONFERENCE ON IMAGE ANALYSIS, VOLS 1 AND 2, 1997, : 103 - 110