Robust rotation-invariant texture classification using a model based approach

被引:30
|
作者
Campisi, P [1 ]
Neri, A
Panci, G
Scarano, G
机构
[1] Univ Roma Tre, Dipartimento Elettron Applicata, I-00146 Rome, Italy
[2] Univ Roma La Sapienza, Dip INFOCOM, I-00184 Rome, Italy
关键词
moment invariants; texture analysis; texture classification;
D O I
10.1109/TIP.2003.822607
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, a model based texture classification procedure is presented. The texture is modeled as the output of a linear system driven by a binary image. This latter retains the morphological characteristics of the texture and it is specified by its spatial autocorrelation function (ACF). We show that features extracted from the ACF of the binary excitation suffice to represent the texture for classification purposes. Specifically, we employ a moment invariants based technique to classify the ACF. The resulting proposed classification procedure is thus inherently rotation invariant. Moreover, it is robust with respect to additive noise. Experimental results show that this approach allows obtaining high correct rotation-invariant classification rates while containing the size of the feature space.
引用
收藏
页码:782 / 791
页数:10
相关论文
共 50 条
  • [1] Model based rotation-invariant texture classification
    Campisi, P
    Neri, A
    Scarano, G
    [J]. 2002 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL III, PROCEEDINGS, 2002, : 117 - 120
  • [2] Rotation-invariant texture classification
    Lahajnar, F
    Kovacic, S
    [J]. PATTERN RECOGNITION LETTERS, 2003, 24 (9-10) : 1151 - 1161
  • [3] Sorted random projections for robust rotation-invariant texture classification
    Liu, Li
    Fieguth, Paul
    Clausi, David
    Kuang, Gangyao
    [J]. PATTERN RECOGNITION, 2012, 45 (06) : 2405 - 2418
  • [4] Compact rotation-invariant texture classification
    Southam, P
    Harvey, R
    [J]. ICIP: 2004 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1- 5, 2004, : 3033 - 3036
  • [5] Rotation-invariant texture classification using feature distributions
    Pietikäinen, M
    Ojala, T
    Xu, Z
    [J]. PATTERN RECOGNITION, 2000, 33 (01) : 43 - 52
  • [6] Rotation-invariant texture classification using feature distributions
    Pietikainen, M
    Xu, Z
    Ojala, T
    [J]. SCIA '97 - PROCEEDINGS OF THE 10TH SCANDINAVIAN CONFERENCE ON IMAGE ANALYSIS, VOLS 1 AND 2, 1997, : 103 - 110
  • [7] Rotation-invariant texture classification using a complete space-frequency model
    Haley, GM
    Manjunath, BS
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 1999, 8 (02) : 255 - 269
  • [8] Texture analysis of an image by using a rotation-invariant model
    Rosenberger, C
    Chehdi, K
    Cariou, C
    Ogier, JM
    [J]. ICASSP '99: 1999 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, PROCEEDINGS VOLS I-VI, 1999, : 3289 - 3292
  • [9] Rotation-invariant features based on directional coding for texture classification
    Ouslimani, Farida
    Ouslimani, Achour
    Ameur, Zohra
    [J]. NEURAL COMPUTING & APPLICATIONS, 2019, 31 (10): : 6393 - 6400
  • [10] Rotation-invariant texture classification using circular Gabor wavelets
    Yin, Qingbo
    Kim, Jong-Nam
    Shen, Liran
    [J]. OPTICAL ENGINEERING, 2009, 48 (01)