Empirical Mode Decomposition for Rotation Invariant Texture Classification

被引:0
|
作者
Xiong Changzhen [1 ]
Guo Fenhong [2 ,3 ]
机构
[1] North China Univ Technol, Lab Intelligent Transportat Syst, Beijing, Peoples R China
[2] North China Univ Technol, Coll Sci, Beijing, Peoples R China
[3] Sun Yat Sen Univ, Sch Informat Technol & Sci, Guangzhou, Guangdong, Peoples R China
关键词
SEGMENTATION; FILTERS; ALGORITHM; FEATURES;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A novel and effective scheme for rotation invariant texture classification is presented using an adaptive and approximately orthogonal filtering process Bidimensional Empirical Mode Decomposition (BEMD). The extraction of rotation invariant feature for a given image involves BEMD and circular zones. A feature vector extracted from circular zones of intrinsic mode function (IMF) is constructed for rotation invariant texture classification. In the experiments, we use rotation invariant feature to classify a set of 25 distinct natural textures selected from the Brodatz album. The experimental results show that the effectiveness of the proposed classification scheme compared with other classification methods.
引用
收藏
页码:551 / 554
页数:4
相关论文
共 50 条
  • [1] Texture Retrieval by Scale and Rotation Invariant Directional Empirical Mode Decomposition
    Hou, Mingliang
    Li, CunHua
    Zhang, Yong
    [J]. PROCEEDINGS OF THE 8TH IEEE/ACIS INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION SCIENCE, 2009, : 1131 - 1135
  • [2] Rotation invariant complex empirical mode decomposition
    Bin Altaf, M. Umair
    Gautama, Temujin
    Tanaka, Toshihisa
    Mandic, Danlio P.
    [J]. 2007 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL III, PTS 1-3, PROCEEDINGS, 2007, : 1009 - +
  • [3] Texture classification through directional empirical mode decomposition
    Liu, ZX
    Wang, HJ
    Peng, SL
    [J]. PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 4, 2004, : 803 - 806
  • [4] Robust rotation invariant texture classification
    Porter, R
    Canagarajah, N
    [J]. 1997 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I - V: VOL I: PLENARY, EXPERT SUMMARIES, SPECIAL, AUDIO, UNDERWATER ACOUSTICS, VLSI; VOL II: SPEECH PROCESSING; VOL III: SPEECH PROCESSING, DIGITAL SIGNAL PROCESSING; VOL IV: MULTIDIMENSIONAL SIGNAL PROCESSING, NEURAL NETWORKS - VOL V: STATISTICAL SIGNAL AND ARRAY PROCESSING, APPLICATIONS, 1997, : 3157 - 3160
  • [5] Rotation-invariant texture classification
    Lahajnar, F
    Kovacic, S
    [J]. PATTERN RECOGNITION LETTERS, 2003, 24 (9-10) : 1151 - 1161
  • [6] Rotation invariant texture classification by ridgelet transform and frequency-orientation space decomposition
    Pan, Wumo
    Bui, T. D.
    Suen, C. Y.
    [J]. SIGNAL PROCESSING, 2008, 88 (01) : 189 - 199
  • [7] Compact rotation-invariant texture classification
    Southam, P
    Harvey, R
    [J]. ICIP: 2004 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1- 5, 2004, : 3033 - 3036
  • [8] Rotation invariant roughness features for texture classification
    Charalampidis, D
    Kasparis, T
    [J]. 2002 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I-IV, PROCEEDINGS, 2002, : 3672 - 3675
  • [9] Gabor filters for rotation invariant texture classification
    Porter, R
    Canagarajah, N
    [J]. ISCAS '97 - PROCEEDINGS OF 1997 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS I - IV: CIRCUITS AND SYSTEMS IN THE INFORMATION AGE, 1997, : 1193 - 1196
  • [10] A survey of rotation invariant texture classification methods
    Manthalkar, R
    Biswas, PK
    [J]. IETE JOURNAL OF RESEARCH, 2002, 48 (3-4) : 189 - 198