Holonomic quantum computation

被引:819
|
作者
Zanardi, P [1 ]
Rasetti, M
机构
[1] Ist Nazl Fis Mat, I-16152 Genoa, Italy
[2] Inst Sci Interchange Fdn, I-10133 Turin, Italy
[3] Politecn Torino, Dipartimento Fis, I-10129 Turin, Italy
关键词
D O I
10.1016/S0375-9601(99)00803-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that the notion of generalized Berry phase i.e., non-abelian holonomy, can be used for enabling quantum computation. The computational space is realized by a n-fold degenerate eigenspace of a family of Hamiltonians parametrized by a manifold M. The point of M represents classical configuration of control fields and, for multi-partite systems, couplings between subsystem. Adiabatic loops in the control M induce non trivial unitary transformations on the computational space. For a generic system it is shown that this mechanism allows for universal quantum computation by composing a generic pair of loops in M. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:94 / 99
页数:6
相关论文
共 50 条
  • [21] Nonadiabatic holonomic quantum computation with Rydberg superatoms
    Zhao, P. Z.
    Wu, X.
    Xing, T. H.
    Xu, G. F.
    Tong, D. M.
    PHYSICAL REVIEW A, 2018, 98 (03)
  • [22] Superadiabatic holonomic quantum computation in cavity QED
    Liu, Bao-Jie
    Huang, Zhen-Hua
    Xue, Zheng-Yuan
    Zhang, Xin-Ding
    PHYSICAL REVIEW A, 2017, 95 (06)
  • [23] Nonadiabatic holonomic quantum computation based on a commutation relation
    Zhao, P. Z.
    Tong, D. M.
    PHYSICAL REVIEW A, 2023, 108 (01)
  • [24] Universal quantum computation by holonomic and nonlocal gates with imperfections
    Ellinas, D. (ellinas@science.tuc.gr), 2001, American Institute of Physics Inc. (64):
  • [25] Nonadiabatic holonomic quantum computation and its optimal control
    Yan LIANG
    Pu SHEN
    Tao CHEN
    Zheng-Yuan XUE
    ScienceChina(InformationSciences), 2023, 66 (08) : 23 - 44
  • [26] Nonadiabatic Holonomic Quantum Computation via Path Optimization
    Ji, Li-Na
    Liang, Yan
    Shen, Pu
    Xue, Zheng-Yuan
    PHYSICAL REVIEW APPLIED, 2022, 18 (04)
  • [27] Nonadiabatic holonomic quantum computation on coupled transmons with ancillaries
    Chen, Tao
    Zhang, Jiang
    Xue, Zheng-Yuan
    PHYSICAL REVIEW A, 2018, 98 (05)
  • [28] Refocusing schemes for holonomic quantum computation in the presence of dissipation
    Cen, LX
    Zanardi, P
    PHYSICAL REVIEW A, 2004, 70 (05): : 052323 - 1
  • [29] Evaluation of holonomic quantum computation: Adiabatic versus nonadiabatic
    Cen, LX
    Li, XQ
    Yan, YJ
    Zheng, HZ
    Wang, SJ
    PHYSICAL REVIEW LETTERS, 2003, 90 (14) : 1 - 147902
  • [30] Decoherence-suppressed nonadiabatic holonomic quantum computation
    Liu, Bao-Jie
    Yan, L. -L.
    Zhang, Y.
    Yung, M. -H.
    Su, Shi-Lei
    Shan, C. X.
    PHYSICAL REVIEW RESEARCH, 2023, 5 (01):