Decoherence-suppressed nonadiabatic holonomic quantum computation

被引:6
|
作者
Liu, Bao-Jie [1 ,2 ,3 ]
Yan, L. -L. [1 ]
Zhang, Y. [1 ]
Yung, M. -H. [2 ]
Su, Shi-Lei [1 ]
Shan, C. X. [1 ]
机构
[1] Zhengzhou Univ, Sch Phys, Zhengzhou 450001, Peoples R China
[2] Southern Univ Sci & Technol, Dept Phys, Shenzhen 518055, Guangdong, Peoples R China
[3] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA
来源
PHYSICAL REVIEW RESEARCH | 2023年 / 5卷 / 01期
基金
中国国家自然科学基金;
关键词
EXPERIMENTAL REALIZATION; GEOMETRIC SPIN; PHASE; GATES; MANIPULATION;
D O I
10.1103/PhysRevResearch.5.013059
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Nonadiabatic holonomic quantum computation (NHQC) provides an essential way to construct robust and high-fidelity quantum gates due to its geometric features. However, NHQC is more sensitive to decay and dephasing errors than a conventional dynamical gate since it requires an ancillary intermediate state. Here, we utilize the Hamiltonian reverse engineering technique to study the influence of intermediate-state decoherence on NHQC gate fidelity, and propose schemes to construct an arbitrary single-qubit holonomic gate and nontrivial two-qubit holonomic gate with high fidelity and robustness to the decoherence. Although the proposed method is generic and can be applied to many experimental platforms, such as superconducting qubits, trapped ions, and quantum dots, here we take a nitrogen-vacancy center as an example to show that the gate fidelity can be significantly enhanced from 89% to 99.6% in contrast to recent experimental NHQC schemes [Phys. Rev. Lett. 119, 140503 (2017); Nat. Photonics 11, 309 (2017); Opt. Lett. 43, 2380 (2018)], and the robustness against decoherence can also be significantly improved. All in all, our scheme provides a promising way for fault-tolerant geometric quantum computation.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Nonadiabatic Holonomic Quantum Computation in Decoherence-Free Subspaces
    Xu, G. F.
    Zhang, J.
    Tong, D. M.
    Sjoqvist, Erik
    Kwek, L. C.
    [J]. PHYSICAL REVIEW LETTERS, 2012, 109 (17)
  • [2] Decoherence in holonomic quantum computation
    Florio, Giuseppe
    [J]. OPEN SYSTEMS & INFORMATION DYNAMICS, 2006, 13 (03): : 263 - 272
  • [3] Nonadiabatic holonomic quantum computation in decoherence-free subspaces with trapped ions
    Liang, Zhen-Tao
    Du, Yan-Xiong
    Huang, Wei
    Xue, Zheng-Yuan
    Yan, Hui
    [J]. PHYSICAL REVIEW A, 2014, 89 (06)
  • [4] Advances in nonadiabatic holonomic quantum computation
    Zhao, Peizi
    Xu, Guofu
    Tong, Dianmin
    [J]. CHINESE SCIENCE BULLETIN-CHINESE, 2021, 66 (16): : 1935 - 1945
  • [5] Composite nonadiabatic holonomic quantum computation
    Xu, G. F.
    Zhao, P. Z.
    Xing, T. H.
    Sjoqvist, Erik
    Tong, D. M.
    [J]. PHYSICAL REVIEW A, 2017, 95 (03)
  • [6] Holonomic quantum computation in the presence of decoherence
    Fuentes-Guridi, I
    Girelli, F
    Livine, E
    [J]. PHYSICAL REVIEW LETTERS, 2005, 94 (02)
  • [7] Experimental Realization of Nonadiabatic Holonomic Quantum Computation
    Feng, Guanru
    Xu, Guofu
    Long, Guilu
    [J]. PHYSICAL REVIEW LETTERS, 2013, 110 (19)
  • [8] Nonadiabatic holonomic quantum computation with Rydberg superatoms
    Zhao, P. Z.
    Wu, X.
    Xing, T. H.
    Xu, G. F.
    Tong, D. M.
    [J]. PHYSICAL REVIEW A, 2018, 98 (03)
  • [9] Nonadiabatic holonomic quantum computation based on a commutation relation
    Zhao, P. Z.
    Tong, D. M.
    [J]. PHYSICAL REVIEW A, 2023, 108 (01)
  • [10] Nonadiabatic holonomic quantum computation on coupled transmons with ancillaries
    Chen, Tao
    Zhang, Jiang
    Xue, Zheng-Yuan
    [J]. PHYSICAL REVIEW A, 2018, 98 (05)