Holonomic quantum computation

被引:819
|
作者
Zanardi, P [1 ]
Rasetti, M
机构
[1] Ist Nazl Fis Mat, I-16152 Genoa, Italy
[2] Inst Sci Interchange Fdn, I-10133 Turin, Italy
[3] Politecn Torino, Dipartimento Fis, I-10129 Turin, Italy
关键词
D O I
10.1016/S0375-9601(99)00803-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that the notion of generalized Berry phase i.e., non-abelian holonomy, can be used for enabling quantum computation. The computational space is realized by a n-fold degenerate eigenspace of a family of Hamiltonians parametrized by a manifold M. The point of M represents classical configuration of control fields and, for multi-partite systems, couplings between subsystem. Adiabatic loops in the control M induce non trivial unitary transformations on the computational space. For a generic system it is shown that this mechanism allows for universal quantum computation by composing a generic pair of loops in M. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:94 / 99
页数:6
相关论文
共 50 条
  • [41] Implementation of holonomic quantum computation through engineering and manipulating the environment
    Yin, Zhang-qi
    Li, Fu-li
    Peng, Peng
    PHYSICAL REVIEW A, 2007, 76 (06):
  • [42] Fault-tolerant holonomic quantum computation in surface codes
    Zheng, Yi-Cong
    Brun, Todd A.
    PHYSICAL REVIEW A, 2015, 91 (02):
  • [43] General approach for constructing Hamiltonians for nonadiabatic holonomic quantum computation
    Zhao, P. Z.
    Li, K. Z.
    Xu, G. F.
    Tong, D. M.
    PHYSICAL REVIEW A, 2020, 101 (06)
  • [44] Heralded atomic nonadiabatic holonomic quantum computation with Rydberg blockade
    Kang, Yi-Hao
    Shi, Zhi-Cheng
    Song, Jie
    Xia, Yan
    PHYSICAL REVIEW A, 2020, 102 (02)
  • [45] Fast Holonomic Quantum Computation on Superconducting Circuits With Optimal Control
    Li, Sai
    Chen, Tao
    Xue, Zheng-Yuan
    ADVANCED QUANTUM TECHNOLOGIES, 2020, 3 (03)
  • [46] Holonomic Quantum Computation by Time dependent Decoherence Free Subspaces
    Lin, J. N.
    Liang, Y.
    Yang, H. D.
    Gui, J.
    Wu, S. L.
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2017, 56 (04) : 1298 - 1307
  • [47] Robustness of optimal working points for nonadiabatic holonomic quantum computation
    Trullo, A.
    Facchi, P.
    Fazio, R.
    Florio, G.
    Giovannetti, V.
    Pascazio, S.
    LASER PHYSICS, 2006, 16 (10) : 1478 - 1485
  • [48] Estimate of the time required to perform a nonadiabatic holonomic quantum computation
    Sonnerborn, Ole
    PHYSICAL REVIEW A, 2024, 109 (06)
  • [49] Holonomic surface codes for fault-tolerant quantum computation
    Zhang, Jiang
    Devitt, Simon J.
    You, J. Q.
    Nori, Franco
    PHYSICAL REVIEW A, 2018, 97 (02)
  • [50] Nonadiabatic Holonomic Quantum Computation in Decoherence-Free Subspaces
    Xu, G. F.
    Zhang, J.
    Tong, D. M.
    Sjoqvist, Erik
    Kwek, L. C.
    PHYSICAL REVIEW LETTERS, 2012, 109 (17)