We show that the notion of generalized Berry phase i.e., non-abelian holonomy, can be used for enabling quantum computation. The computational space is realized by a n-fold degenerate eigenspace of a family of Hamiltonians parametrized by a manifold M. The point of M represents classical configuration of control fields and, for multi-partite systems, couplings between subsystem. Adiabatic loops in the control M induce non trivial unitary transformations on the computational space. For a generic system it is shown that this mechanism allows for universal quantum computation by composing a generic pair of loops in M. (C) 1999 Elsevier Science B.V. All rights reserved.
机构:
Univ So Calif, Ctr Quantum Informat Sci & Technol, Ming Hsieh Dept Elect Engn, Los Angeles, CA 90089 USAUniv So Calif, Ctr Quantum Informat Sci & Technol, Ming Hsieh Dept Elect Engn, Los Angeles, CA 90089 USA
Zheng, Yi-Cong
Brun, Todd A.
论文数: 0引用数: 0
h-index: 0
机构:
Univ So Calif, Ctr Quantum Informat Sci & Technol, Ming Hsieh Dept Elect Engn, Los Angeles, CA 90089 USAUniv So Calif, Ctr Quantum Informat Sci & Technol, Ming Hsieh Dept Elect Engn, Los Angeles, CA 90089 USA
机构:
Karlstad Univ, Dept Math & Comp Sci, S-65188 Karlstad, Sweden
Stockholm Univ, Dept Phys, S-10691 Stockholm, SwedenKarlstad Univ, Dept Math & Comp Sci, S-65188 Karlstad, Sweden