Holonomic quantum computation

被引:819
|
作者
Zanardi, P [1 ]
Rasetti, M
机构
[1] Ist Nazl Fis Mat, I-16152 Genoa, Italy
[2] Inst Sci Interchange Fdn, I-10133 Turin, Italy
[3] Politecn Torino, Dipartimento Fis, I-10129 Turin, Italy
关键词
D O I
10.1016/S0375-9601(99)00803-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that the notion of generalized Berry phase i.e., non-abelian holonomy, can be used for enabling quantum computation. The computational space is realized by a n-fold degenerate eigenspace of a family of Hamiltonians parametrized by a manifold M. The point of M represents classical configuration of control fields and, for multi-partite systems, couplings between subsystem. Adiabatic loops in the control M induce non trivial unitary transformations on the computational space. For a generic system it is shown that this mechanism allows for universal quantum computation by composing a generic pair of loops in M. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:94 / 99
页数:6
相关论文
共 50 条
  • [31] Universal quantum computation by holonomic and nonlocal gates with imperfections
    Ellinas, D
    Pachos, J
    PHYSICAL REVIEW A, 2001, 64 (02):
  • [32] Chow's theorem and universal holonomic quantum computation
    Lucarelli, D
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (24): : 5107 - 5114
  • [33] Holonomic quantum computation in decoherence-free subspaces
    Wu, LA
    Zanardi, P
    Lidar, DA
    PHYSICAL REVIEW LETTERS, 2005, 95 (13)
  • [34] Nonadiabatic holonomic quantum computation and its optimal control
    Liang, Yan
    Shen, Pu
    Chen, Tao
    Xue, Zheng-Yuan
    SCIENCE CHINA-INFORMATION SCIENCES, 2023, 66 (08)
  • [35] Nonadiabatic holonomic quantum computation using Rydberg blockade
    Kang, Yi-Hao
    Chen, Ye-Hong
    Shi, Zhi-Cheng
    Huang, Bi-Hua
    Song, Jie
    Xia, Yan
    PHYSICAL REVIEW A, 2018, 97 (04)
  • [36] Nonadiabatic holonomic quantum computation with atom-cavity system
    Xing, Tonghao
    Tong, Dianmin
    CHINESE SCIENCE BULLETIN-CHINESE, 2020, 65 (23): : 2499 - 2506
  • [37] Average-value estimation in nonadiabatic holonomic quantum computation
    Xu, Guo-Fu
    Zhao, P. Z.
    PHYSICAL REVIEW A, 2023, 108 (05)
  • [38] Holonomic quantum computation associated with a defect structure of conical graphene
    Bakke, K.
    Furtado, C.
    Sergeenkov, S.
    EPL, 2009, 87 (03)
  • [39] Nonadiabatic holonomic quantum computation with all-resonant control
    Xue, Zheng-Yuan
    Zhou, Jian
    Chu, Yao-Ming
    Hu, Yong
    PHYSICAL REVIEW A, 2016, 94 (02)
  • [40] Holonomic quantum computation on microwave photons with all resonant interactions
    Dong, Ping
    Yu, Long-Bao
    Zhou, Jian
    LASER PHYSICS LETTERS, 2016, 13 (08)