Complex-valued Bayesian parameter estimation via Markov chain Monte Carlo

被引:3
|
作者
Liu, Ying [1 ]
Li, Chunguang [1 ]
机构
[1] Zhejiang Univ, Coll Informat Sci & Elect Engn, Hangzhou 310027, Peoples R China
基金
中国国家自然科学基金;
关键词
Bayesian analysis; Complex-valued; Markov chain Monte Carlo; Parameter estimation; Metropolis-Hastings sampling; Differential evolution; MODEL; MCMC;
D O I
10.1016/j.ins.2015.08.002
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The study of parameter estimation of a specified model has a long history. In statistics, Bayesian analysis via Markov chain Monte Carlo (MCMC) sampling is an efficient way for parameter estimation. However, the existing MCMC sampling is only performed in the real parameter space. In some situation, complex-valued parametric modeling is more preferable as complex representation brings economies and insights that would not be achieved by real-valued representation. Therefore, to estimate complex-valued parameters, it is more convenient and elegant to perform the MCMC sampling in the complex parameter space. In this paper, firstly, based on the assumption that the observation signal is proper, two complex MCMC algorithms using the Metropolis-Hastings sampling and the differential evolution are proposed, in which the probability density functions (pdfs) in Bayesian estimation are characterized by the usual Hermitian covariance matrices. Secondly, to improve the performance for the case that the observation signal is improper, two augmented complex MCMC algorithms are developed, where the pdfs are computed by the augmented complex statistics. Both theoretical studies and numerical simulations are presented to show the effectiveness of the proposed algorithms in complex-valued parameter estimation. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:334 / 349
页数:16
相关论文
共 50 条
  • [41] Markov Chain Monte Carlo (MCMC) Method for Parameter Estimation of Nonlinear Dynamical Systems
    Rehman, M. Javvad Ur
    Dass, Sarat Chandra
    Asirvadam, Vijanth Sagayan
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON SIGNAL AND IMAGE PROCESSING APPLICATIONS (ICSIPA), 2015, : 7 - 10
  • [42] Probabilistic parameter estimation of activated sludge processes using Markov Chain Monte Carlo
    Sharifi, Soroosh
    Murthy, Sudhir
    Takacs, Imre
    Massoudieh, Arash
    [J]. WATER RESEARCH, 2014, 50 : 254 - 266
  • [43] CIGALEMC: GALAXY PARAMETER ESTIMATION USING A MARKOV CHAIN MONTE CARLO APPROACH WITH CIGALE
    Serra, Paolo
    Amblard, Alexandre
    Temi, Pasquale
    Burgarella, Denis
    Giovannoli, Elodie
    Buat, Veronique
    Noll, Stefan
    Im, Stephen
    [J]. ASTROPHYSICAL JOURNAL, 2011, 740 (01):
  • [44] Parameter Estimation of an Electrohydraulic Servo System Using a Markov Chain Monte Carlo Method
    Liu, Junhong
    Wu, Huapeng
    Handroos, Heikki
    Haario, Heikki
    [J]. JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2013, 135 (01):
  • [45] Markov chain Monte Carlo approach to parameter estimation in the FitzHugh-Nagumo model
    Jensen, Anders Chr.
    Ditlevsen, Susanne
    Kessler, Mathieu
    Papaspiliopoulos, Omiros
    [J]. PHYSICAL REVIEW E, 2012, 86 (04):
  • [46] Bayesian Updating of Parameters for a Sediment Entrainment Model via Markov Chain Monte Carlo
    Wu, Fu-Chun
    Chen, C. C.
    [J]. JOURNAL OF HYDRAULIC ENGINEERING, 2009, 135 (01) : 22 - 37
  • [47] Bayesian inference of channelized section spillover via Markov Chain Monte Carlo sampling
    Qi, Hongsheng
    Hu, Xianbiao
    [J]. TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2018, 97 : 478 - 498
  • [48] BAYESIAN MODEL CHOICE VIA MARKOV-CHAIN MONTE-CARLO METHODS
    CARLIN, BP
    CHIB, S
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1995, 57 (03): : 473 - 484
  • [49] Bayesian inference of the sites of perturbations in metabolic pathways via Markov chain Monte Carlo
    Jayawardhana, Bayu
    Kell, Douglas B.
    Rattray, Magnus
    [J]. BIOINFORMATICS, 2008, 24 (09) : 1191 - 1197
  • [50] Markov chain Monte Carlo estimation of quantum states
    DiGuglielmo, James
    Messenger, Chris
    Fiurasek, Jaromir
    Hage, Boris
    Samblowski, Aiko
    Schmidt, Tabea
    Schnabel, Roman
    [J]. PHYSICAL REVIEW A, 2009, 79 (03):