Markov chain Monte Carlo estimation of quantum states

被引:4
|
作者
DiGuglielmo, James [1 ,2 ]
Messenger, Chris [1 ,2 ]
Fiurasek, Jaromir [3 ]
Hage, Boris [1 ,2 ]
Samblowski, Aiko [1 ,2 ]
Schmidt, Tabea [1 ,2 ]
Schnabel, Roman [1 ,2 ]
机构
[1] Leibniz Univ Hannover, Inst Gravitat Phys, D-30167 Hannover, Germany
[2] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-30167 Hannover, Germany
[3] Palacky Univ, Dept Opt, Olomouc 77200, Czech Republic
来源
PHYSICAL REVIEW A | 2009年 / 79卷 / 03期
基金
芬兰科学院;
关键词
Bayes methods; Markov processes; Monte Carlo methods; optical squeezing; quantum theory; Wigner distribution; DENSITY-MATRIX; CONVERGENCE;
D O I
10.1103/PhysRevA.79.032114
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We apply a Bayesian data analysis scheme known as the Markov chain Monte Carlo to the tomographic reconstruction of quantum states. This method yields a vector, known as the Markov chain, which contains the full statistical information concerning all reconstruction parameters including their statistical correlations with no a priori assumptions as to the form of the distribution from which it has been obtained. From this vector we can derive, e.g., the marginal distributions and uncertainties of all model parameters, and also of other quantities such as the purity of the reconstructed state. We demonstrate the utility of this scheme by reconstructing the Wigner function of phase-diffused squeezed states. These states possess non-Gaussian statistics and therefore represent a nontrivial case of tomographic reconstruction. We compare our results to those obtained through pure maximum-likelihood and Fisher information approaches.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Estimation via Markov chain Monte Carlo
    Spall, JC
    [J]. IEEE CONTROL SYSTEMS MAGAZINE, 2003, 23 (02): : 34 - 45
  • [2] Estimation via Markov chain Monte Carlo
    Spall, JC
    [J]. PROCEEDINGS OF THE 2002 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2002, 1-6 : 2559 - 2564
  • [3] Markov chain Monte Carlo estimation of quantiles
    Doss, Charles R.
    Flegal, James M.
    Jones, Galin L.
    Neath, Ronald C.
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2014, 8 : 2448 - 2478
  • [4] The quantum complexity of Markov chain Monte Carlo
    Richter, Peter C.
    [J]. LOGIC AND THEORY OF ALGORITHMS, 2008, 5028 : 511 - 522
  • [5] A Quantum Parallel Markov Chain Monte Carlo
    Holbrook, Andrew J.
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2023, 32 (04) : 1402 - 1415
  • [6] Noise can speed Markov chain Monte Carlo estimation and quantum annealing
    Franzke, Brandon
    Kosko, Bart
    [J]. PHYSICAL REVIEW E, 2019, 100 (05)
  • [7] Benchmark estimation for Markov chain Monte Carlo samples
    Guha, S
    MacEachern, SN
    Peruggia, M
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2004, 13 (03) : 683 - 701
  • [8] On quantile estimation and Markov chain Monte Carlo convergence
    Brooks, SP
    Roberts, GO
    [J]. BIOMETRIKA, 1999, 86 (03) : 710 - 717
  • [9] Quantum-enhanced Markov chain Monte Carlo
    David Layden
    Guglielmo Mazzola
    Ryan V. Mishmash
    Mario Motta
    Pawel Wocjan
    Jin-Sung Kim
    Sarah Sheldon
    [J]. Nature, 2023, 619 : 282 - 287
  • [10] Quantum-enhanced Markov chain Monte Carlo
    Layden, David
    Mazzola, Guglielmo
    Mishmash, Ryan V.
    Motta, Mario
    Wocjan, Pawel
    Kim, Jin-Sung
    Sheldon, Sarah
    [J]. NATURE, 2023, 619 (7969) : 282 - +