Markov chain Monte Carlo approach to parameter estimation in the FitzHugh-Nagumo model

被引:11
|
作者
Jensen, Anders Chr. [1 ]
Ditlevsen, Susanne [1 ]
Kessler, Mathieu [2 ]
Papaspiliopoulos, Omiros [3 ,4 ]
机构
[1] Univ Copenhagen, Dept Math Sci, Copenhagen, Denmark
[2] Univ Politecn Cartagena, Dept Matemat Aplicada & Estadist, Cartagena, Spain
[3] Univ Pompeu Fabra, ICREA, Barcelona, Spain
[4] Univ Pompeu Fabra, Dept Econ, Barcelona, Spain
来源
PHYSICAL REVIEW E | 2012年 / 86卷 / 04期
关键词
INFERENCE; COHERENCE;
D O I
10.1103/PhysRevE.86.041114
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Excitability is observed in a variety of natural systems, such as neuronal dynamics, cardiovascular tissues, or climate dynamics. The stochastic FitzHugh-Nagumo model is a prominent example representing an excitable system. To validate the practical use of a model, the first step is to estimate model parameters from experimental data. This is not an easy task because of the inherent nonlinearity necessary to produce the excitable dynamics, and because the two coordinates of the model are moving on different time scales. Here we propose a Bayesian framework for parameter estimation, which can handle multidimensional nonlinear diffusions with large time scale separation. The estimation method is illustrated on simulated data.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Parameter estimation of the FitzHugh-Nagumo model using noisy measurements for membrane potential
    Che, Yanqiu
    Geng, Li-Hui
    Han, Chunxiao
    Cui, Shigang
    Wang, Jiang
    [J]. CHAOS, 2012, 22 (02)
  • [2] Parameter estimation by a Markov chain Monte Carlo technique for the Candy model
    Descombes, X
    van Lieshout, MNM
    Stoica, R
    Zerubia, J
    [J]. 2001 IEEE WORKSHOP ON STATISTICAL SIGNAL PROCESSING PROCEEDINGS, 2001, : 22 - 25
  • [3] The FitzHugh-Nagumo Model: Firing Modes with Time-varying Parameters & Parameter Estimation
    Faghih, Rose T.
    Savla, Ketan
    Dahleh, Munther A.
    Brown, Emery N.
    [J]. 2010 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2010, : 4116 - 4119
  • [4] Parameter Estimation of the FitzHugh-Nagumo Neuron Model Using Integrals Over Finite Time Periods
    Concha, Antonio
    Garrido, Ruben
    [J]. JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2015, 10 (02):
  • [5] Spike transitions in the FitzHugh-Nagumo model
    Biscari, P.
    Lelli, C.
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2011, 126 (02): : 1 - 9
  • [6] Global bifurcations in FitzHugh-Nagumo model
    Georgescu, A
    Rocsoreanu, C
    Giurgiteanu, N
    [J]. BIFURCATION, SYMMETRY AND PATTERNS, 2003, : 197 - 202
  • [7] Electronic Model of FitzHugh-Nagumo Neuron
    Petrovas, A.
    Lisauskas, S.
    Slepikas, A.
    [J]. ELEKTRONIKA IR ELEKTROTECHNIKA, 2012, 122 (06) : 117 - 120
  • [8] Microscopic model for FitzHugh-Nagumo dynamics
    Malevanets, A
    Kapral, R
    [J]. PHYSICAL REVIEW E, 1997, 55 (05): : 5657 - 5670
  • [9] Meromorphic solutions in the FitzHugh-Nagumo model
    Demina, Maria V.
    Kudryashov, Nikolay A.
    [J]. APPLIED MATHEMATICS LETTERS, 2018, 82 : 18 - 23
  • [10] Pattern Formation of the FitzHugh-Nagumo Model: Cellular Automata Approach
    Asgari, Yazdan
    Ghaemi, Mehrdad
    Mahjani, Mohammad Ghasem
    [J]. IRANIAN JOURNAL OF CHEMISTRY & CHEMICAL ENGINEERING-INTERNATIONAL ENGLISH EDITION, 2011, 30 (01): : 135 - 142